Changes and Diagnostic Significance of miR-542-3p Expression in Patients with Myocardial Infarction.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biotechnology Pub Date : 2024-09-06 DOI:10.1007/s12033-024-01272-w
Yu Chen, Shuke Liu, Xueshan Zhang, Changpeng Zuo
{"title":"Changes and Diagnostic Significance of miR-542-3p Expression in Patients with Myocardial Infarction.","authors":"Yu Chen, Shuke Liu, Xueshan Zhang, Changpeng Zuo","doi":"10.1007/s12033-024-01272-w","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) is a heart lesion, that endangers the life safety of patients. This study focused on exploring the clinical effect of miR-542-3p on AMI and no-reflow after percutaneous coronary intervention (PCI). Serum samples were collected from 100 AMI emergency inpatients. The expression of miR-542-3p was quantified by qPCR. The predictive role of miR-542-3p was disclosed by plotting ROC curve. In addition, AMI subjects were cataloged into a group of no-reflow and normal reflow group. The risk factors of no-reflow were estimated by logistic regression analysis. In the serum samples of AMI patients, the level of miR-542-3p showed a pattern of decreasing. MiR-542-3p expression represented a high sensitivity and specificity of the prediction of AMI. A decrease of miR-542-3p content was revealed in AMI patients without reflow after PCI. Logistic regression results reflected that miR-542-3p was an independent biomarker for no-reflow. The declined miR-542-3p expression was a predictive marker for AMI and no-reflow in AMI patients.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01272-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute myocardial infarction (AMI) is a heart lesion, that endangers the life safety of patients. This study focused on exploring the clinical effect of miR-542-3p on AMI and no-reflow after percutaneous coronary intervention (PCI). Serum samples were collected from 100 AMI emergency inpatients. The expression of miR-542-3p was quantified by qPCR. The predictive role of miR-542-3p was disclosed by plotting ROC curve. In addition, AMI subjects were cataloged into a group of no-reflow and normal reflow group. The risk factors of no-reflow were estimated by logistic regression analysis. In the serum samples of AMI patients, the level of miR-542-3p showed a pattern of decreasing. MiR-542-3p expression represented a high sensitivity and specificity of the prediction of AMI. A decrease of miR-542-3p content was revealed in AMI patients without reflow after PCI. Logistic regression results reflected that miR-542-3p was an independent biomarker for no-reflow. The declined miR-542-3p expression was a predictive marker for AMI and no-reflow in AMI patients.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心肌梗死患者体内 miR-542-3p 表达的变化及其诊断意义
急性心肌梗死(AMI)是一种危及患者生命安全的心脏病变。本研究主要探讨了 miR-542-3p 对急性心肌梗死和经皮冠状动脉介入治疗(PCI)后无血流的临床影响。研究收集了 100 名急性心肌梗死急诊住院患者的血清样本。通过 qPCR 对 miR-542-3p 的表达进行量化。通过绘制 ROC 曲线揭示了 miR-542-3p 的预测作用。此外,AMI 受试者被分为无回流组和正常回流组。通过逻辑回归分析估计了无回流的风险因素。在 AMI 患者的血清样本中,miR-542-3p 的水平呈下降趋势。miR-542-3p的表达对预测AMI具有较高的敏感性和特异性。PCI 后未出现回流的 AMI 患者的 miR-542-3p 含量下降。逻辑回归结果显示,miR-542-3p 是无回流的独立生物标志物。miR-542-3p表达的下降是AMI患者AMI和无回流的预测标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
期刊最新文献
Glycoprofile Comparison of the SARS-CoV-2 Spike Proteins Expressed in CHO and HEK Cell Lines. ZNF217 Mediates Transcriptional Activation of GRHL3 to Regulate SLC22A31 and Promote Malignant Progression in Thyroid Cancer. The Inhibitory Effects of Anti-GPC3 Antibody on Wnt/β-Catenin Signaling Pathway as a Biological Therapy in Liver Cancer. Proteins with Anti-apoptotic Action in the Hemolymph of Caterpillars of the Megalopygidae Family Acts by Maintaining the Structure of the Cellular Cytoskeleton. Recent Advances in Marine-Derived Nanoformulation for the Management of Glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1