Multicenter radio-multiomic analysis for predicting breast cancer outcome and unravelling imaging-biological connection

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2024-09-07 DOI:10.1038/s41698-024-00666-y
Chao You, Guan-Hua Su, Xu Zhang, Yi Xiao, Ren-Cheng Zheng, Shi-Yun Sun, Jia-Yin Zhou, Lu-Yi Lin, Ze-Zhou Wang, He Wang, Yan Chen, Wei-Jun Peng, Yi-Zhou Jiang, Zhi-Ming Shao, Ya-Jia Gu
{"title":"Multicenter radio-multiomic analysis for predicting breast cancer outcome and unravelling imaging-biological connection","authors":"Chao You, Guan-Hua Su, Xu Zhang, Yi Xiao, Ren-Cheng Zheng, Shi-Yun Sun, Jia-Yin Zhou, Lu-Yi Lin, Ze-Zhou Wang, He Wang, Yan Chen, Wei-Jun Peng, Yi-Zhou Jiang, Zhi-Ming Shao, Ya-Jia Gu","doi":"10.1038/s41698-024-00666-y","DOIUrl":null,"url":null,"abstract":"Radiomics offers a noninvasive avenue for predicting clinicopathological factors. However, thorough investigations into a robust breast cancer outcome-predicting model and its biological significance remain limited. This study develops a robust radiomic model for prognosis prediction, and further excavates its biological foundation and transferring prediction performance. We retrospectively collected preoperative dynamic contrast-enhanced MRI data from three distinct breast cancer patient cohorts. In FUSCC cohort (n = 466), Lasso was used to select features correlated with patient prognosis and multivariate Cox regression was utilized to integrate these features and build the radiomic risk model, while multiomic analysis was conducted to investigate the model’s biological implications. DUKE cohort (n = 619) and I-SPY1 cohort (n = 128) were used to test the performance of the radiomic signature in outcome prediction. A thirteen-feature radiomic signature was identified in the FUSCC cohort training set and validated in the FUSCC cohort testing set, DUKE cohort and I-SPY1 cohort for predicting relapse-free survival (RFS) and overall survival (OS) (RFS: p = 0.013, p = 0.024 and p = 0.035; OS: p = 0.036, p = 0.005 and p = 0.027 in the three cohorts). Multiomic analysis uncovered metabolic dysregulation underlying the radiomic signature (ATP metabolic process: NES = 1.84, p-adjust = 0.02; cholesterol biosynthesis: NES = 1.79, p-adjust = 0.01). Regarding the therapeutic implications, the radiomic signature exhibited value when combining clinical factors for predicting the pathological complete response to neoadjuvant chemotherapy (DUKE cohort, AUC = 0.72; I-SPY1 cohort, AUC = 0.73). In conclusion, our study identified a breast cancer outcome-predicting radiomic signature in a multicenter radio-multiomic study, along with its correlations with multiomic features in prognostic risk assessment, laying the groundwork for future prospective clinical trials in personalized risk stratification and precision therapy.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00666-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00666-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiomics offers a noninvasive avenue for predicting clinicopathological factors. However, thorough investigations into a robust breast cancer outcome-predicting model and its biological significance remain limited. This study develops a robust radiomic model for prognosis prediction, and further excavates its biological foundation and transferring prediction performance. We retrospectively collected preoperative dynamic contrast-enhanced MRI data from three distinct breast cancer patient cohorts. In FUSCC cohort (n = 466), Lasso was used to select features correlated with patient prognosis and multivariate Cox regression was utilized to integrate these features and build the radiomic risk model, while multiomic analysis was conducted to investigate the model’s biological implications. DUKE cohort (n = 619) and I-SPY1 cohort (n = 128) were used to test the performance of the radiomic signature in outcome prediction. A thirteen-feature radiomic signature was identified in the FUSCC cohort training set and validated in the FUSCC cohort testing set, DUKE cohort and I-SPY1 cohort for predicting relapse-free survival (RFS) and overall survival (OS) (RFS: p = 0.013, p = 0.024 and p = 0.035; OS: p = 0.036, p = 0.005 and p = 0.027 in the three cohorts). Multiomic analysis uncovered metabolic dysregulation underlying the radiomic signature (ATP metabolic process: NES = 1.84, p-adjust = 0.02; cholesterol biosynthesis: NES = 1.79, p-adjust = 0.01). Regarding the therapeutic implications, the radiomic signature exhibited value when combining clinical factors for predicting the pathological complete response to neoadjuvant chemotherapy (DUKE cohort, AUC = 0.72; I-SPY1 cohort, AUC = 0.73). In conclusion, our study identified a breast cancer outcome-predicting radiomic signature in a multicenter radio-multiomic study, along with its correlations with multiomic features in prognostic risk assessment, laying the groundwork for future prospective clinical trials in personalized risk stratification and precision therapy.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测乳腺癌预后的多中心放射多组学分析,揭示成像与生物学的联系。
放射组学为预测临床病理因素提供了一种非侵入性途径。然而,对稳健的乳腺癌预后预测模型及其生物学意义的深入研究仍然有限。本研究建立了一个用于预后预测的稳健放射影像学模型,并进一步挖掘其生物学基础和转移预测性能。我们回顾性地收集了三个不同乳腺癌患者队列的术前动态对比增强磁共振成像数据。在FUSCC队列(n = 466)中,使用Lasso选择与患者预后相关的特征,并利用多变量Cox回归整合这些特征,建立放射组学风险模型,同时进行多组学分析以研究该模型的生物学意义。DUKE 队列(n = 619)和 I-SPY1 队列(n = 128)被用来检验放射特征在预后预测中的表现。在FUSCC队列训练集中确定了13个特征放射组特征,并在FUSCC队列测试集、DUKE队列和I-SPY1队列中验证了其预测无复发生存期(RFS)和总生存期(OS)的能力(RFS:三个队列中P = 0.013、P = 0.024和P = 0.035;OS:P = 0.036、P = 0.005和P = 0.027)。多组学分析揭示了辐射组学特征背后的代谢失调(ATP 代谢过程:NES=1.84,p-adjust=0.02;胆固醇生物合成:NES = 1.79,p-adjust = 0.01)。关于治疗意义,当结合临床因素预测新辅助化疗的病理完全反应时,放射学特征显示出了价值(DUKE 队列,AUC = 0.72;I-SPY1 队列,AUC = 0.73)。总之,我们的研究在一项多中心放射多组学研究中发现了一种可预测乳腺癌预后的放射组学特征,以及它与多组学特征在预后风险评估中的相关性,为未来个性化风险分层和精准治疗的前瞻性临床试验奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Immune infiltration correlates with transcriptomic subtypes in primary estrogen receptor positive invasive lobular breast cancer Multi-omics analysis of Prolyl 3-hydroxylase 1 as a prognostic biomarker for immune infiltration in ccRCC Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology Integrating histopathology and transcriptomics for spatial tumor microenvironment profiling in a melanoma case study DDR1 is identified as an immunotherapy target for microsatellite stable colon cancer by CRISPR screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1