The microglial P2Y6 receptor as a therapeutic target for neurodegenerative diseases.

IF 10.8 1区 医学 Q1 NEUROSCIENCES Translational Neurodegeneration Pub Date : 2024-09-07 DOI:10.1186/s40035-024-00438-5
Jacob M Dundee, Guy C Brown
{"title":"The microglial P2Y<sub>6</sub> receptor as a therapeutic target for neurodegenerative diseases.","authors":"Jacob M Dundee, Guy C Brown","doi":"10.1186/s40035-024-00438-5","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases are associated with chronic neuroinflammation in the brain, which can result in microglial phagocytosis of live synapses and neurons that may contribute to cognitive deficits and neuronal loss. The microglial P2Y<sub>6</sub> receptor (P2Y<sub>6</sub>R) is a G-protein coupled receptor, which stimulates microglial phagocytosis when activated by extracellular uridine diphosphate, released by stressed neurons. Knockout or inhibition of P2Y<sub>6</sub>R can prevent neuronal loss in mouse models of Alzheimer's disease (AD), Parkinson's disease, epilepsy, neuroinflammation and aging, and prevent cognitive deficits in models of AD, epilepsy and aging. This review summarises the known roles of P2Y<sub>6</sub>R in the physiology and pathology of the brain, and its potential as a therapeutic target to prevent neurodegeneration and other brain pathologies.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"47"},"PeriodicalIF":10.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-024-00438-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases are associated with chronic neuroinflammation in the brain, which can result in microglial phagocytosis of live synapses and neurons that may contribute to cognitive deficits and neuronal loss. The microglial P2Y6 receptor (P2Y6R) is a G-protein coupled receptor, which stimulates microglial phagocytosis when activated by extracellular uridine diphosphate, released by stressed neurons. Knockout or inhibition of P2Y6R can prevent neuronal loss in mouse models of Alzheimer's disease (AD), Parkinson's disease, epilepsy, neuroinflammation and aging, and prevent cognitive deficits in models of AD, epilepsy and aging. This review summarises the known roles of P2Y6R in the physiology and pathology of the brain, and its potential as a therapeutic target to prevent neurodegeneration and other brain pathologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为神经退行性疾病治疗靶点的小胶质细胞 P2Y6 受体。
神经退行性疾病与大脑中的慢性神经炎症有关,这种炎症可导致小胶质细胞吞噬活的突触和神经元,从而造成认知障碍和神经元丢失。小胶质细胞 P2Y6 受体(P2Y6R)是一种 G 蛋白偶联受体,当被受压神经元释放的细胞外二磷酸尿苷激活时,会刺激小胶质细胞的吞噬作用。在阿尔茨海默病(AD)、帕金森病、癫痫、神经炎症和衰老的小鼠模型中,敲除或抑制 P2Y6R 可防止神经元丢失,并在阿尔茨海默病、癫痫和衰老模型中防止认知缺陷。本综述总结了 P2Y6R 在大脑生理和病理中的已知作用,以及它作为治疗靶点预防神经变性和其他大脑病变的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Translational Neurodegeneration
Translational Neurodegeneration Neuroscience-Cognitive Neuroscience
CiteScore
19.50
自引率
0.80%
发文量
44
审稿时长
10 weeks
期刊介绍: Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.
期刊最新文献
N-terminus α-synuclein detection reveals new and more diverse aggregate morphologies in multiple system atrophy and Parkinson's disease. SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction. Endosomal traffic disorders: a driving force behind neurodegenerative diseases. Inflammasomes in neurodegenerative diseases. CD2AP deficiency aggravates Alzheimer's disease phenotypes and pathology through p38 MAPK activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1