Spatiotemporal characterization of heatwave exposure across historically vulnerable communities.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-09-06 DOI:10.1038/s41598-024-71704-9
Saurav Bhattarai, Sunil Bista, Sanjib Sharma, Loren D White, Farshad Amini, Rocky Talchabhadel
{"title":"Spatiotemporal characterization of heatwave exposure across historically vulnerable communities.","authors":"Saurav Bhattarai, Sunil Bista, Sanjib Sharma, Loren D White, Farshad Amini, Rocky Talchabhadel","doi":"10.1038/s41598-024-71704-9","DOIUrl":null,"url":null,"abstract":"<p><p>Heatwaves pose a serious threat and are projected to amplify with changing climate and social demographics. A comprehensive understanding of heatwave exposure to the communities is imperative for the development of effective strategies and mitigation plans. This study explores spatiotemporal characterization of heatwaves across the historically vulnerable communities in Mississippi, United States. We derive multiple heatwave metrics including frequency, duration, and magnitude based on temperature data for urban-specific daytime, nighttime, and day-night combined conditions. Our analysis depicts a rising heatwave trend across all counties, with the most extreme shifts observed in prolonged day-night events lacking overnight relief. We integrate physical heatwave hazards with a socioeconomic vulnerability index to develop an integrated urban heatwave risk index. Integrated metric identifies the counties in northwest Mississippi as heat-prone areas, exhibiting an urgent need to prioritize heat resilience and adaptive strategies in these regions. The compounding urban heatwave and vulnerability risks in these communities highlights an environmental justice imperative to implement equitable policies that protect disadvantaged populations. Although this study is focused on Mississippi, our framework is scalable and can be employed to urban regions globally. This study provides a solid foundation for developing timely heatwave preparedness and mitigation to avert preventable heat-related tragedies as extremes intensify with climate change.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-71704-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heatwaves pose a serious threat and are projected to amplify with changing climate and social demographics. A comprehensive understanding of heatwave exposure to the communities is imperative for the development of effective strategies and mitigation plans. This study explores spatiotemporal characterization of heatwaves across the historically vulnerable communities in Mississippi, United States. We derive multiple heatwave metrics including frequency, duration, and magnitude based on temperature data for urban-specific daytime, nighttime, and day-night combined conditions. Our analysis depicts a rising heatwave trend across all counties, with the most extreme shifts observed in prolonged day-night events lacking overnight relief. We integrate physical heatwave hazards with a socioeconomic vulnerability index to develop an integrated urban heatwave risk index. Integrated metric identifies the counties in northwest Mississippi as heat-prone areas, exhibiting an urgent need to prioritize heat resilience and adaptive strategies in these regions. The compounding urban heatwave and vulnerability risks in these communities highlights an environmental justice imperative to implement equitable policies that protect disadvantaged populations. Although this study is focused on Mississippi, our framework is scalable and can be employed to urban regions globally. This study provides a solid foundation for developing timely heatwave preparedness and mitigation to avert preventable heat-related tragedies as extremes intensify with climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
历史上易受热浪影响社区的时空特征。
热浪构成了严重的威胁,并且预计会随着气候和社会人口结构的变化而加剧。全面了解热浪对社区的影响对于制定有效的战略和缓解计划至关重要。本研究探讨了美国密西西比州历史上脆弱社区热浪的时空特征。我们根据特定城市白天、夜间和昼夜综合条件下的温度数据,得出了多个热浪指标,包括频率、持续时间和幅度。我们的分析表明,所有县的热浪都呈上升趋势,最极端的变化出现在昼夜持续时间较长、缺乏隔夜缓解的情况下。我们将物理热浪危害与社会经济脆弱性指数相结合,制定了综合城市热浪风险指数。综合指数将密西西比州西北部各县确定为高温易发地区,表明这些地区迫切需要优先考虑抗热和适应战略。这些社区的城市热浪风险和脆弱性风险交织在一起,凸显了实施保护弱势群体的公平政策的环境正义必要性。虽然这项研究的重点是密西西比州,但我们的框架具有可扩展性,可用于全球的城市地区。这项研究为制定及时的热浪防备和缓解措施奠定了坚实的基础,从而在极端天气随着气候变化而加剧的情况下,避免可预防的与热相关的悲剧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Intradialytic oral nutrition effects on malnourished hemodialysis patients: a randomized trial Relationship between chronic rhinosinusitis and risk of obstructive sleep apnea Registration of thermal images of dead teeth to identify odontogenic infection foci A method for compressing AIS trajectory based on the adaptive core threshold difference Douglas–Peucker algorithm Impact of diet intervention on visceral adipose tissue and hepatic fat in patients with obesity or type 2 diabetes: a randomized trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1