Zachary C Holmes, Katariina Koivusaari, Claire E O'Brien, Katherine V Richeson, Leila I Strickland
{"title":"Untargeted metabolomic analysis of human milk from healthy mothers reveals drivers of metabolite variability.","authors":"Zachary C Holmes, Katariina Koivusaari, Claire E O'Brien, Katherine V Richeson, Leila I Strickland","doi":"10.1038/s41598-024-71677-9","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the human milk metabolome can help inform infant nutrition and health. Untargeted metabolomics was used to study breast milk from 31 healthy participants to assess the shared metabolites in milk from participants with various backgrounds and understand how different demographic, health, and environmental factors impact the milk metabolome. Breast milk samples were analyzed by four separate UPLC-MS/MS methods. Metabolite Set Enrichment Analysis was used to study the most and least variable metabolites. The associations between participant factors and the metabolome were assessed with redundancy analyses. Among all 31 participants and between each untargeted UPLC-MS/MS method, 731 metabolites were detected, of which 389 were shared among all participants. Of the shared metabolites, lactose was the least and lactobionate the most variable metabolite. In the biological super pathway analysis, xenobiotics were the most variable metabolites. Infant age, maternal age, number of live births, and pre-pregnancy BMI were associated with the milk metabolome. In conclusion, the most variable metabolites originate from environmental exposures while the well-conserved core metabolites are linked to cell metabolism or are crucial for infant nutrition and osmoregulation. Understanding the variability of the breast milk metabolome can help identify components that are crucial for infant nutrition, growth, and development.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-71677-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the human milk metabolome can help inform infant nutrition and health. Untargeted metabolomics was used to study breast milk from 31 healthy participants to assess the shared metabolites in milk from participants with various backgrounds and understand how different demographic, health, and environmental factors impact the milk metabolome. Breast milk samples were analyzed by four separate UPLC-MS/MS methods. Metabolite Set Enrichment Analysis was used to study the most and least variable metabolites. The associations between participant factors and the metabolome were assessed with redundancy analyses. Among all 31 participants and between each untargeted UPLC-MS/MS method, 731 metabolites were detected, of which 389 were shared among all participants. Of the shared metabolites, lactose was the least and lactobionate the most variable metabolite. In the biological super pathway analysis, xenobiotics were the most variable metabolites. Infant age, maternal age, number of live births, and pre-pregnancy BMI were associated with the milk metabolome. In conclusion, the most variable metabolites originate from environmental exposures while the well-conserved core metabolites are linked to cell metabolism or are crucial for infant nutrition and osmoregulation. Understanding the variability of the breast milk metabolome can help identify components that are crucial for infant nutrition, growth, and development.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.