{"title":"Multifeature Fusion Method with Metaheuristic Optimization for Automated Voice Pathology Detection.","authors":"Erdal Özbay, Feyza Altunbey Özbay, Nima Khodadadi, Farhad Soleimanian Gharehchopogh, Seyedali Mirjalili","doi":"10.1016/j.jvoice.2024.08.018","DOIUrl":null,"url":null,"abstract":"<p><p>Voice pathologies occur due to various factors, such as malfunction of the vocal cords. Computerized acoustic examination-based vocal pathology detection is crucial for early diagnosis, efficient follow-up, and improving problematic speech. Different acoustic measurements provide it. Executing this process requires expert monitoring and is not preferred by patients because it is time-consuming and costly. This paper is aimed at detecting metaheuristic-based automatic voice pathology. First, feature maps of 10 common diseases, including cordectomy, dysphonia, front lateral partial resection, contact pachyderma, laryngitis, lukoplakia, pure breath, recurrent laryngeal paralysis, vocal fold polyp, and vox senilis, were obtained from the Zero-Crossing Rate, Root-Mean-Square Energy, and Mel-frequency Cepstral Coefficients using a thousand voice signals from the Saarbruecken Voice Database dataset. Hybridizations of different features obtained from the voices of the same diseases using these three methods were used to increase the model's performance. The Grey Wolf Optimizer (MELGWO) algorithm based on local search, evolutionary operator, and concatenated feature maps derived from various approaches was employed to minimize the number of features, implement the models faster, and produce the best result. The fitness values of the metaheuristic algorithms were then determined using supervised machine learning techniques such as Support Vector Machine (SVM) and K-nearest neighbors. The F1 score, sensitivity, specificity, accuracy, and other assessment criteria were compared with the experimental data. The best accuracy result was achieved with 99.50% from the SVM classifier using the feature maps optimized by the improved MELGWO algorithms.</p>","PeriodicalId":49954,"journal":{"name":"Journal of Voice","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Voice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jvoice.2024.08.018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Voice pathologies occur due to various factors, such as malfunction of the vocal cords. Computerized acoustic examination-based vocal pathology detection is crucial for early diagnosis, efficient follow-up, and improving problematic speech. Different acoustic measurements provide it. Executing this process requires expert monitoring and is not preferred by patients because it is time-consuming and costly. This paper is aimed at detecting metaheuristic-based automatic voice pathology. First, feature maps of 10 common diseases, including cordectomy, dysphonia, front lateral partial resection, contact pachyderma, laryngitis, lukoplakia, pure breath, recurrent laryngeal paralysis, vocal fold polyp, and vox senilis, were obtained from the Zero-Crossing Rate, Root-Mean-Square Energy, and Mel-frequency Cepstral Coefficients using a thousand voice signals from the Saarbruecken Voice Database dataset. Hybridizations of different features obtained from the voices of the same diseases using these three methods were used to increase the model's performance. The Grey Wolf Optimizer (MELGWO) algorithm based on local search, evolutionary operator, and concatenated feature maps derived from various approaches was employed to minimize the number of features, implement the models faster, and produce the best result. The fitness values of the metaheuristic algorithms were then determined using supervised machine learning techniques such as Support Vector Machine (SVM) and K-nearest neighbors. The F1 score, sensitivity, specificity, accuracy, and other assessment criteria were compared with the experimental data. The best accuracy result was achieved with 99.50% from the SVM classifier using the feature maps optimized by the improved MELGWO algorithms.
期刊介绍:
The Journal of Voice is widely regarded as the world''s premiere journal for voice medicine and research. This peer-reviewed publication is listed in Index Medicus and is indexed by the Institute for Scientific Information. The journal contains articles written by experts throughout the world on all topics in voice sciences, voice medicine and surgery, and speech-language pathologists'' management of voice-related problems. The journal includes clinical articles, clinical research, and laboratory research. Members of the Foundation receive the journal as a benefit of membership.