Jin A Kim , Young-Su Park , Jun-Hwan Kim , Cheol Young Choi
{"title":"Impact of water temperature on oxidative stress and intestinal microbiota in pearl-spot chromis, Chromis notata (Temminck & Schlegel, 1843)","authors":"Jin A Kim , Young-Su Park , Jun-Hwan Kim , Cheol Young Choi","doi":"10.1016/j.cbpb.2024.111029","DOIUrl":null,"url":null,"abstract":"<div><p>Water temperature is an abiotic factor influencing fish metabolism and physiological responses. As poikilothermic creatures, fish are notable sensitivity to fluctuations in water temperature, which also significantly influences intestinal microbial proliferation. This study aimed to investigate the impact of both low (8 °C) and high (28 °C) water temperatures on oxidative stress and the intestinal microbiota of <em>Chromis notata</em>, a species that has recently migrated northward owing to changes in sea water temperature. Laboratory experiments were conducted to assess changes in superoxide dismutase (SOD), catalase (CAT), and lysozyme activities, as well as changes in the abundance and diversity of intestinal microbiota. The activities of antioxidant enzymes, specifically SOD and CAT, in <em>C. notata</em> exposed to low and high temperatures, showed an increase compared to the control group (maintained at 18 °C). Moreover, liver H<sub>2</sub>O<sub>2</sub> levels exhibited a significant increase over time. Conversely, plasma lysozyme activity significantly decreased in groups subjected to low and high water temperatures compared to the control group. Analyzing changes in the intestinal microbiota, we observed an increase in the proportion of Firmicutes but a decrease in Proteobacteria, which are known for their role in immune enhancement, in <em>C. notata</em> exposed to both low and high water temperatures. We propose that alterations in water temperature impact the antioxidant enzyme activity of <em>C. notata</em>, leading to compromised immune responses and disruption of the biological balance of the intestinal microbiota, potentially affecting the host's survival.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495924000964","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Water temperature is an abiotic factor influencing fish metabolism and physiological responses. As poikilothermic creatures, fish are notable sensitivity to fluctuations in water temperature, which also significantly influences intestinal microbial proliferation. This study aimed to investigate the impact of both low (8 °C) and high (28 °C) water temperatures on oxidative stress and the intestinal microbiota of Chromis notata, a species that has recently migrated northward owing to changes in sea water temperature. Laboratory experiments were conducted to assess changes in superoxide dismutase (SOD), catalase (CAT), and lysozyme activities, as well as changes in the abundance and diversity of intestinal microbiota. The activities of antioxidant enzymes, specifically SOD and CAT, in C. notata exposed to low and high temperatures, showed an increase compared to the control group (maintained at 18 °C). Moreover, liver H2O2 levels exhibited a significant increase over time. Conversely, plasma lysozyme activity significantly decreased in groups subjected to low and high water temperatures compared to the control group. Analyzing changes in the intestinal microbiota, we observed an increase in the proportion of Firmicutes but a decrease in Proteobacteria, which are known for their role in immune enhancement, in C. notata exposed to both low and high water temperatures. We propose that alterations in water temperature impact the antioxidant enzyme activity of C. notata, leading to compromised immune responses and disruption of the biological balance of the intestinal microbiota, potentially affecting the host's survival.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.