{"title":"Berberine alleviates fructose-induced hepatic injury via ADK/AMPK/Nrf2 pathway: A novel insight","authors":"","doi":"10.1016/j.biopha.2024.117361","DOIUrl":null,"url":null,"abstract":"<div><p>Berberine (BBR) is a major active component of traditional Chinese medicine Rhizoma Coptidis and Cortex Phellodendri, which have been frequently used to treat liver diseases. Oxidative stress and inflammation are two pivotal hepatic pathological hallmarks. This study aimed to explore the potential effect and underlying mechanism of BBR on fructose-induced rat liver injury model, and hepatocyte damage in HepG2 and BRL-3A cells. Our results indicated that BBR effectively reversed fructose-induced body weight gain, glucose intolerance, and insulin resistance, observably attenuated abnormal histopathological alterations and ameliorated serum activities of ALT and AST. <em>In vivo</em> and <em>in vitro</em>, BBR significantly alleviated the secretion of pro-inflammatory cytokines IL-6 and TNF-α, and elevated levels of anti-inflammatory cytokine IL-10. BBR also attenuated oxidative stress by markedly decreasing intracellular contents of ROS and MDA, and increasing SOD enzymatic activity and GSH level. Furthermore, BBR substantially upregulated the protein expression of Nrf2, HO-1 and p-AMPK, and the fluorescence level of p-AMPK. In addition, BBR significantly increased the level of AMP, the ratio of AMP/ATP, and promoted the expression of ADK. Nevertheless, si<em>ADK</em> abolished the benefits exerted by BBR on HepG2 and BRL-3A cells. Conclusively, the hepatoprotective effect of BBR was believed to be intimately associated with anti-inflammatory and antioxidant action mediated, at least partially, via ADK/AMPK/Nrf2 signaling. This work provided further support for the traditional application of Rhizoma Coptidis and Cortex Phellodendri in liver protection and might shed novel dimension to the clinical application of BBR, providing a promising lead compound for drug design.</p></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0753332224012460/pdfft?md5=dc01d9020f3a7e22d2de14e55c082c2f&pid=1-s2.0-S0753332224012460-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332224012460","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Berberine (BBR) is a major active component of traditional Chinese medicine Rhizoma Coptidis and Cortex Phellodendri, which have been frequently used to treat liver diseases. Oxidative stress and inflammation are two pivotal hepatic pathological hallmarks. This study aimed to explore the potential effect and underlying mechanism of BBR on fructose-induced rat liver injury model, and hepatocyte damage in HepG2 and BRL-3A cells. Our results indicated that BBR effectively reversed fructose-induced body weight gain, glucose intolerance, and insulin resistance, observably attenuated abnormal histopathological alterations and ameliorated serum activities of ALT and AST. In vivo and in vitro, BBR significantly alleviated the secretion of pro-inflammatory cytokines IL-6 and TNF-α, and elevated levels of anti-inflammatory cytokine IL-10. BBR also attenuated oxidative stress by markedly decreasing intracellular contents of ROS and MDA, and increasing SOD enzymatic activity and GSH level. Furthermore, BBR substantially upregulated the protein expression of Nrf2, HO-1 and p-AMPK, and the fluorescence level of p-AMPK. In addition, BBR significantly increased the level of AMP, the ratio of AMP/ATP, and promoted the expression of ADK. Nevertheless, siADK abolished the benefits exerted by BBR on HepG2 and BRL-3A cells. Conclusively, the hepatoprotective effect of BBR was believed to be intimately associated with anti-inflammatory and antioxidant action mediated, at least partially, via ADK/AMPK/Nrf2 signaling. This work provided further support for the traditional application of Rhizoma Coptidis and Cortex Phellodendri in liver protection and might shed novel dimension to the clinical application of BBR, providing a promising lead compound for drug design.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.