Data-driven conditional probability to predict fatigue properties of multi-principal element alloys (MPEAs)

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-09-07 DOI:10.1016/j.cma.2024.117358
{"title":"Data-driven conditional probability to predict fatigue properties of multi-principal element alloys (MPEAs)","authors":"","doi":"10.1016/j.cma.2024.117358","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional fatigue assessment methods for new and unexplored metallic alloys is challenging due to very limited experimental data. To address this, we formulate the assessment within a conditional probability framework, allowing us to capture the complexities of uncertainty in fatigue predictions. We employ advanced probabilistic methods to account for both inherent material variability and model uncertainty. We analyse fatigue data of multi-principal element alloys (MPEAs) tested under stress ratios of R = 0.1 and R = −1, including face-centred cubic (FCC) microstructures of CoCrFeMnNi and AlCoCrFeMnNi alloys. Based on results, we found a clear material trend which allows us more reliable predictions and informed decision-making, which is distinct than the conventional fitting. for the future alloy design. As we demonstrate the efficacy of this framework in extracting the intricate relationships between MPEA composition and the trend in fatigue behaviour, we believe that our study will pave the way for enhanced advanced material design and uncertainty quantification in future MPEA research and materials engineering applications.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045782524006133/pdfft?md5=80c175af8c8ed3b2b9bf2f30a607037c&pid=1-s2.0-S0045782524006133-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006133","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional fatigue assessment methods for new and unexplored metallic alloys is challenging due to very limited experimental data. To address this, we formulate the assessment within a conditional probability framework, allowing us to capture the complexities of uncertainty in fatigue predictions. We employ advanced probabilistic methods to account for both inherent material variability and model uncertainty. We analyse fatigue data of multi-principal element alloys (MPEAs) tested under stress ratios of R = 0.1 and R = −1, including face-centred cubic (FCC) microstructures of CoCrFeMnNi and AlCoCrFeMnNi alloys. Based on results, we found a clear material trend which allows us more reliable predictions and informed decision-making, which is distinct than the conventional fitting. for the future alloy design. As we demonstrate the efficacy of this framework in extracting the intricate relationships between MPEA composition and the trend in fatigue behaviour, we believe that our study will pave the way for enhanced advanced material design and uncertainty quantification in future MPEA research and materials engineering applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用数据驱动的条件概率预测多主元素合金 (MPEA) 的疲劳特性
由于实验数据非常有限,对新型和未开发金属合金的传统疲劳评估方法具有挑战性。为了解决这个问题,我们在条件概率框架内制定了评估方法,使我们能够捕捉疲劳预测中不确定性的复杂性。我们采用先进的概率方法来考虑材料的固有变异性和模型的不确定性。我们分析了在应力比 R = 0.1 和 R = -1 条件下测试的多主元合金 (MPEA) 的疲劳数据,包括 CoCrFeMnNi 和 AlCoCrFeMnNi 合金的面心立方 (FCC) 显微结构。基于这些结果,我们发现了一种明确的材料趋势,它能让我们做出更可靠的预测和明智的决策,这与传统的拟合方法截然不同。由于我们证明了这一框架在提取 MPEA 成分与疲劳行为趋势之间错综复杂的关系方面的功效,我们相信,我们的研究将为在未来的 MPEA 研究和材料工程应用中加强先进材料设计和不确定性量化铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Peridynamic modelling of time-dependent behaviour and creep damage in hyper-viscoelastic solids with pre-cracks Modeling pulmonary perfusion and gas exchange in alveolar microstructures Data-driven projection pursuit adaptation of polynomial chaos expansions for dependent high-dimensional parameters A novel global prediction framework for multi-response models in reliability engineering using adaptive sampling and active subspace methods Modeling via peridynamics for damage and failure of hyperelastic composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1