Characterizing forest structural changes in response to non-stand replacing disturbances using bitemporal airborne laser scanning data

IF 5.7 Q1 ENVIRONMENTAL SCIENCES Science of Remote Sensing Pub Date : 2024-08-31 DOI:10.1016/j.srs.2024.100160
Tommaso Trotto , Nicholas C. Coops , Alexis Achim , Sarah E. Gergel , Dominik Roeser
{"title":"Characterizing forest structural changes in response to non-stand replacing disturbances using bitemporal airborne laser scanning data","authors":"Tommaso Trotto ,&nbsp;Nicholas C. Coops ,&nbsp;Alexis Achim ,&nbsp;Sarah E. Gergel ,&nbsp;Dominik Roeser","doi":"10.1016/j.srs.2024.100160","DOIUrl":null,"url":null,"abstract":"<div><p>Characterizing the extent, severity, and persistence of natural disturbances in forests is crucial in areas as large and heterogeneous as the Canadian boreal forest. Non-stand replacing (NSR) disturbances, in particular, can produce subtle and lagged impacts to forest canopy and structure with mechanisms that remain elusive, and they are challenging to discern using typical remote sensing approaches including aerial photointerpretation and spectral analysis of satellite imagery. Consequently, there is a need for timely and accurate information on the structural modifications due to NSR disturbances to inform proactive forest management practices. To address these needs, we leveraged a unique bitemporal airborne laser scanning (ALS) dataset to characterize changes in the forest structure caused by eastern spruce budworm (ESB, <em>Choristoneura fumiferana</em> (Clem.)), responsible for one of the greatest tree mortality in Canada. A range of infestation severity with varying impacts to forest structure are examined in a mixedwood boreal forest in Lac-Saint Jean, Quebec, Canada. We derived 14 ALS structural change metrics at 10 m spatial resolution, including height, cover, and gappiness 7 years apart (2014–2020). Six distinct structural responses to cumulative ESB infestations severity were identified using cluster analysis from the combination of the 14 change metrics, with canopy cover, the 75th and 25th height percentiles (p75-25) driving cluster separability. Canopy cover and p25 consistently decreased as cumulative infestation severity increased, whereas p75 showed greater variability across the landscape. Photointerpretation of aerial imagery over the same period confirmed the validity of the structural characterization. Further, we studied the role of initial forest structures in modulating the severity of the infestation and found that sparser canopies with cover &lt;65% and shorter trees (p75 &lt; 7.5 m, p25 &lt; 2.5 m) were associated with less severe ESB infestations after 7 years, and controlling for underlying environmental factors. These findings showed the potential of bitemporal ALS data in characterizing structural changes due to ESB infestations at fine scale based on canopy cover and height, relevant for forest management strategies to better target current and future infestations.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"10 ","pages":"Article 100160"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666017224000440/pdfft?md5=43b2b88984cde901116c4e7c896d1146&pid=1-s2.0-S2666017224000440-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing the extent, severity, and persistence of natural disturbances in forests is crucial in areas as large and heterogeneous as the Canadian boreal forest. Non-stand replacing (NSR) disturbances, in particular, can produce subtle and lagged impacts to forest canopy and structure with mechanisms that remain elusive, and they are challenging to discern using typical remote sensing approaches including aerial photointerpretation and spectral analysis of satellite imagery. Consequently, there is a need for timely and accurate information on the structural modifications due to NSR disturbances to inform proactive forest management practices. To address these needs, we leveraged a unique bitemporal airborne laser scanning (ALS) dataset to characterize changes in the forest structure caused by eastern spruce budworm (ESB, Choristoneura fumiferana (Clem.)), responsible for one of the greatest tree mortality in Canada. A range of infestation severity with varying impacts to forest structure are examined in a mixedwood boreal forest in Lac-Saint Jean, Quebec, Canada. We derived 14 ALS structural change metrics at 10 m spatial resolution, including height, cover, and gappiness 7 years apart (2014–2020). Six distinct structural responses to cumulative ESB infestations severity were identified using cluster analysis from the combination of the 14 change metrics, with canopy cover, the 75th and 25th height percentiles (p75-25) driving cluster separability. Canopy cover and p25 consistently decreased as cumulative infestation severity increased, whereas p75 showed greater variability across the landscape. Photointerpretation of aerial imagery over the same period confirmed the validity of the structural characterization. Further, we studied the role of initial forest structures in modulating the severity of the infestation and found that sparser canopies with cover <65% and shorter trees (p75 < 7.5 m, p25 < 2.5 m) were associated with less severe ESB infestations after 7 years, and controlling for underlying environmental factors. These findings showed the potential of bitemporal ALS data in characterizing structural changes due to ESB infestations at fine scale based on canopy cover and height, relevant for forest management strategies to better target current and future infestations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用位时机载激光扫描数据确定森林结构变化对非标准替换干扰的响应特征
确定森林自然干扰的范围、严重程度和持续时间,对于像加拿大北方森林这样面积大且分布不均的地区至关重要。特别是非立地重置(NSR)干扰,会对森林冠层和结构产生微妙和滞后的影响,其机理仍然难以捉摸,而且使用典型的遥感方法(包括航空照片判读和卫星图像的光谱分析)也很难辨别。因此,我们需要及时、准确地了解 NSR 干扰对森林结构造成的改变,从而为积极的森林管理实践提供依据。为了满足这些需求,我们利用独特的位时机载激光扫描(ALS)数据集来描述东部云杉芽虫(ESB,Choristoneura fumiferana (Clem.))对森林结构造成的变化。我们在加拿大魁北克省圣让湖(Lac-Saint Jean)的北方混交林中研究了一系列虫害严重程度对森林结构的不同影响。我们以 10 米的空间分辨率得出了 14 个 ALS 结构变化指标,包括高度、盖度和斑驳度,时间间隔为 7 年(2014-2020 年)。通过对 14 项变化指标的组合进行聚类分析,确定了对累积 ESB 侵害严重程度的六种不同的结构响应,其中树冠覆盖率、第 75 和第 25 高度百分位数(p75-25)推动了聚类的可分性。随着累积侵扰严重程度的增加,树冠覆盖率和第 25 百分位数持续下降,而第 75 百分位数在整个景观中的变化更大。同期航空图像的照片解读证实了结构特征的有效性。此外,我们还研究了初始森林结构在调节虫害严重程度方面的作用,发现在控制基本环境因素的情况下,覆盖率为 65% 的稀疏树冠和较矮的树木(p75 为 7.5 米,p25 为 2.5 米)与 7 年后较轻的 ESB 虫害有关。这些研究结果表明,位时 ALS 数据可以根据树冠覆盖率和高度,在精细尺度上描述 ESB 侵害造成的结构变化,这与森林管理策略有关,可以更好地针对当前和未来的侵害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
期刊最新文献
Coastal vertical land motion across Southeast Asia derived from combining tide gauge and satellite altimetry observations Identifying thermokarst lakes using deep learning and high-resolution satellite images A two-stage deep learning architecture for detection global coastal and offshore submesoscale ocean eddy using SDGSAT-1 multispectral imagery A comprehensive evaluation of satellite-based and reanalysis soil moisture products over the upper Blue Nile Basin, Ethiopia A comprehensive review of rice mapping from satellite data: Algorithms, product characteristics and consistency assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1