A novel nomogram for predicting the prognosis of critically ill patients with EEG patterns exhibiting stimulus-induced rhythmic, periodic, or ictal discharges
Yan Wang , Jiajia Yang , Wei Wang , Xin Zhou, Xuefeng Wang, Jing Luo, Feng Li
{"title":"A novel nomogram for predicting the prognosis of critically ill patients with EEG patterns exhibiting stimulus-induced rhythmic, periodic, or ictal discharges","authors":"Yan Wang , Jiajia Yang , Wei Wang , Xin Zhou, Xuefeng Wang, Jing Luo, Feng Li","doi":"10.1016/j.neucli.2024.103010","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>To explore the factors associated with poor prognosis in critically ill patients with Electroencephalogram (EEG) patterns exhibiting stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs), and to construct a prognostic prediction model.</p></div><div><h3>Methods</h3><p>This study included a total of 53 critically ill patients with EEG patterns exhibiting SIRPIDs who were admitted to the First Affiliated Hospital of Chongqing Medical University from May 2023 to March 2024. Patients were divided into two groups based on their Modified Rankin Scale (mRS) scores at discharge: good prognosis group (0–3 points) and poor prognosis group (4–6 points). Retrospective analyses were performed on the clinical and EEG parameters of patients in both groups. Logistic regression analysis was applied to identify the risk factors related to poor prognosis in critically ill patients with EEG patterns exhibiting SIRPIDs; a risk prediction model for poor prognosis was constructed, along with an individualized predictive nomogram model, and the predictive performance and consistency of the model were evaluated.</p></div><div><h3>Results</h3><p>Multivariate logistic regression analysis revealed that APACHE II score (OR=1.217, 95 %CI=1.030∼1.438), slow frequency bands or no obvious brain electrical activity (OR=8.720, 95 %CI=1.220∼62.313), and no sleep waveforms (OR=9.813, 95 %CI=1.371∼70.223) were independent risk factors for poor prognosis in patients. A regression model established based on multivariate logistic regression analysis had an area under the curve of 0.902. The model's accuracy was 90.60 %, with a sensitivity of 92.86 % and a specificity of 89.70 %. The nomogram model, after internal validation, showed a concordance index of 0.904.</p></div><div><h3>Conclusions</h3><p>A high APACHE II score, EEG patterns with slow frequency bands or no obvious brain electrical activity, and no sleep waveforms were independent risk factors for poor prognosis in patients with SIRPIDs. The nomogram model constructed based on these factors had a favorably high level of accuracy in predicting the risk of poor prognosis and held certain reference and application value for clinical neurofunctional assessment and prognostic determination.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 6","pages":"Article 103010"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophysiologie Clinique/Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0987705324000686","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
To explore the factors associated with poor prognosis in critically ill patients with Electroencephalogram (EEG) patterns exhibiting stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs), and to construct a prognostic prediction model.
Methods
This study included a total of 53 critically ill patients with EEG patterns exhibiting SIRPIDs who were admitted to the First Affiliated Hospital of Chongqing Medical University from May 2023 to March 2024. Patients were divided into two groups based on their Modified Rankin Scale (mRS) scores at discharge: good prognosis group (0–3 points) and poor prognosis group (4–6 points). Retrospective analyses were performed on the clinical and EEG parameters of patients in both groups. Logistic regression analysis was applied to identify the risk factors related to poor prognosis in critically ill patients with EEG patterns exhibiting SIRPIDs; a risk prediction model for poor prognosis was constructed, along with an individualized predictive nomogram model, and the predictive performance and consistency of the model were evaluated.
Results
Multivariate logistic regression analysis revealed that APACHE II score (OR=1.217, 95 %CI=1.030∼1.438), slow frequency bands or no obvious brain electrical activity (OR=8.720, 95 %CI=1.220∼62.313), and no sleep waveforms (OR=9.813, 95 %CI=1.371∼70.223) were independent risk factors for poor prognosis in patients. A regression model established based on multivariate logistic regression analysis had an area under the curve of 0.902. The model's accuracy was 90.60 %, with a sensitivity of 92.86 % and a specificity of 89.70 %. The nomogram model, after internal validation, showed a concordance index of 0.904.
Conclusions
A high APACHE II score, EEG patterns with slow frequency bands or no obvious brain electrical activity, and no sleep waveforms were independent risk factors for poor prognosis in patients with SIRPIDs. The nomogram model constructed based on these factors had a favorably high level of accuracy in predicting the risk of poor prognosis and held certain reference and application value for clinical neurofunctional assessment and prognostic determination.
期刊介绍:
Neurophysiologie Clinique / Clinical Neurophysiology (NCCN) is the official organ of the French Society of Clinical Neurophysiology (SNCLF). This journal is published 6 times a year, and is aimed at an international readership, with articles written in English. These can take the form of original research papers, comprehensive review articles, viewpoints, short communications, technical notes, editorials or letters to the Editor. The theme is the neurophysiological investigation of central or peripheral nervous system or muscle in healthy humans or patients. The journal focuses on key areas of clinical neurophysiology: electro- or magneto-encephalography, evoked potentials of all modalities, electroneuromyography, sleep, pain, posture, balance, motor control, autonomic nervous system, cognition, invasive and non-invasive neuromodulation, signal processing, bio-engineering, functional imaging.