Francis Houde , Russell Butler , Etienne St-Onge , Marylie Martel , Véronique Thivierge , Maxime Descoteaux , Kevin Whittingstall , Guillaume Leonard
{"title":"Anatomical measurements and field modeling to assess transcranial magnetic stimulation motor and non-motor effects","authors":"Francis Houde , Russell Butler , Etienne St-Onge , Marylie Martel , Véronique Thivierge , Maxime Descoteaux , Kevin Whittingstall , Guillaume Leonard","doi":"10.1016/j.neucli.2024.103011","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Explore how anatomical measurements and field modeling can be leveraged to improve investigations of transcranial magnetic stimulation (TMS) effects on both motor and non-motor TMS targets.</p></div><div><h3>Methods</h3><p>TMS motor effects (targeting the primary motor cortex [M1]) were evaluated using the resting motor threshold (rMT), while TMS non-motor effects (targeting the superior temporal gyrus [STG]) were assessed using a pain memory task. Anatomical measurements included scalp-cortex distance (SCD) and cortical thickness (CT), whereas field modeling encompassed the magnitude of the electric field (E) induced by TMS.</p></div><div><h3>Results</h3><p>Anatomical measurements and field modeling values differed significantly between M1 and STG. For TMS motor effects, rMT was correlated with SCD, CT, and E values at M1 (<em>p</em> < 0.05). No correlations were found between these metrics for the STG and TMS non-motor effects (pain memory; all p-values > 0.05).</p></div><div><h3>Conclusion</h3><p>Although anatomical measurements and field modeling are closely related to TMS motor effects, their relationship to non-motor effects – such as pain memory – appear to be much more tenuous and complex, highlighting the need for further advancement in our use of TMS and virtual lesion paradigms.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 6","pages":"Article 103011"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophysiologie Clinique/Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0987705324000698","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Explore how anatomical measurements and field modeling can be leveraged to improve investigations of transcranial magnetic stimulation (TMS) effects on both motor and non-motor TMS targets.
Methods
TMS motor effects (targeting the primary motor cortex [M1]) were evaluated using the resting motor threshold (rMT), while TMS non-motor effects (targeting the superior temporal gyrus [STG]) were assessed using a pain memory task. Anatomical measurements included scalp-cortex distance (SCD) and cortical thickness (CT), whereas field modeling encompassed the magnitude of the electric field (E) induced by TMS.
Results
Anatomical measurements and field modeling values differed significantly between M1 and STG. For TMS motor effects, rMT was correlated with SCD, CT, and E values at M1 (p < 0.05). No correlations were found between these metrics for the STG and TMS non-motor effects (pain memory; all p-values > 0.05).
Conclusion
Although anatomical measurements and field modeling are closely related to TMS motor effects, their relationship to non-motor effects – such as pain memory – appear to be much more tenuous and complex, highlighting the need for further advancement in our use of TMS and virtual lesion paradigms.
期刊介绍:
Neurophysiologie Clinique / Clinical Neurophysiology (NCCN) is the official organ of the French Society of Clinical Neurophysiology (SNCLF). This journal is published 6 times a year, and is aimed at an international readership, with articles written in English. These can take the form of original research papers, comprehensive review articles, viewpoints, short communications, technical notes, editorials or letters to the Editor. The theme is the neurophysiological investigation of central or peripheral nervous system or muscle in healthy humans or patients. The journal focuses on key areas of clinical neurophysiology: electro- or magneto-encephalography, evoked potentials of all modalities, electroneuromyography, sleep, pain, posture, balance, motor control, autonomic nervous system, cognition, invasive and non-invasive neuromodulation, signal processing, bio-engineering, functional imaging.