Jorge E. Romero , Tania Villaseñor , Rodrigo Arcos , Edmundo Polanco , Laura Becerril , Edgar Pio , Domingo Jullian
{"title":"A Late-Pleistocene confined volcanic debris avalanche promoted by hydrothermal alteration at the Tinguiririca volcano (Andes of Central Chile)","authors":"Jorge E. Romero , Tania Villaseñor , Rodrigo Arcos , Edmundo Polanco , Laura Becerril , Edgar Pio , Domingo Jullian","doi":"10.1016/j.jvolgeores.2024.108181","DOIUrl":null,"url":null,"abstract":"<div><p>Distinguishing volcanic debris avalanche deposits from other epiclastic breccia could be complex. For more than 60 years, the Tinguiririca deposit (sourced from the homonymous volcano) in the Andes of Central Chile has been described by different authors as glacial moraines, a lahar, a volcanic debris avalanche, and even a debris flow deposit. To decipher its obscured origin and emplacement dynamics, we have carried out a detailed investigation of its distribution, contact relationships, sedimentology, and facies. Our findings unravel that the 57 km-long deposit is 5 to 300 m thick, totalling a reconstructed volume of 3.64 ± 0.05 km<sup>3</sup>. It is composed of unsorted heterometric breccias formed by clasts and blocks arranged in mixed and matrix facies characterised by distinctive lithological domains. In general, three clasts lithologies are dominant, consisting of black and grey andesites and hydrothermally altered clasts with jigsaw cracks and fractures. The deposit overlies terraced colluvium along the valleys and forms hummocks and ridges. Emplacement velocities estimates range from 39.6 m/s to 108.4 m/s. Therefore, the Tinguiririca deposit should represent a massive volcanic debris avalanche that formed after a lateral collapse that affected the ancient Tinguiririca Volcanic Complex, during the Late Pleistocene (between 45 ± 18 and c. 19.2 ± 1.2 ka). The abundance of hydrothermal minerals within the deposit's matrix and clasts (i.e., illite, phengite, epidote, tridymite, chlorite, hematite, jarosite, and alunite) all represent the volcano's hydrothermal system that likely favoured rock weakness and edifice collapse. Finally, the new interpretation is valuable for evaluating volcanic hazards and requires further mapping and research efforts.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"454 ","pages":"Article 108181"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324001732","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Distinguishing volcanic debris avalanche deposits from other epiclastic breccia could be complex. For more than 60 years, the Tinguiririca deposit (sourced from the homonymous volcano) in the Andes of Central Chile has been described by different authors as glacial moraines, a lahar, a volcanic debris avalanche, and even a debris flow deposit. To decipher its obscured origin and emplacement dynamics, we have carried out a detailed investigation of its distribution, contact relationships, sedimentology, and facies. Our findings unravel that the 57 km-long deposit is 5 to 300 m thick, totalling a reconstructed volume of 3.64 ± 0.05 km3. It is composed of unsorted heterometric breccias formed by clasts and blocks arranged in mixed and matrix facies characterised by distinctive lithological domains. In general, three clasts lithologies are dominant, consisting of black and grey andesites and hydrothermally altered clasts with jigsaw cracks and fractures. The deposit overlies terraced colluvium along the valleys and forms hummocks and ridges. Emplacement velocities estimates range from 39.6 m/s to 108.4 m/s. Therefore, the Tinguiririca deposit should represent a massive volcanic debris avalanche that formed after a lateral collapse that affected the ancient Tinguiririca Volcanic Complex, during the Late Pleistocene (between 45 ± 18 and c. 19.2 ± 1.2 ka). The abundance of hydrothermal minerals within the deposit's matrix and clasts (i.e., illite, phengite, epidote, tridymite, chlorite, hematite, jarosite, and alunite) all represent the volcano's hydrothermal system that likely favoured rock weakness and edifice collapse. Finally, the new interpretation is valuable for evaluating volcanic hazards and requires further mapping and research efforts.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.