Drone and ground-truth data collection, image annotation and machine learning: A protocol for coastal habitat mapping and classification

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-08-30 DOI:10.1016/j.mex.2024.102935
{"title":"Drone and ground-truth data collection, image annotation and machine learning: A protocol for coastal habitat mapping and classification","authors":"","doi":"10.1016/j.mex.2024.102935","DOIUrl":null,"url":null,"abstract":"<div><p>Aerial drone imaging is an efficient tool for mapping and monitoring of coastal habitats at high spatial and temporal resolution. Specifically, drone imaging allows for time- and cost-efficient mapping covering larger areas than traditional mapping and monitoring techniques, while also providing more detailed information than those from airplanes and satellites, enabling for example to differentiate various types of coastal vegetation. Here, we present a systematic method for shallow water habitat classification based on drone imagery. The method includes:</p><ul><li><span>•</span><span><p>Collection of drone images and creation of orthomosaics.</p></span></li><li><span>•</span><span><p>Gathering ground-truth data in the field to guide the image annotation and to validate the final map product.</p></span></li><li><span>•</span><span><p>Annotation of drone images into – potentially hierarchical – habitat classes and training of machine learning algorithms for habitat classification.</p></span></li></ul>As a case study, we present a field campaign that employed these methods to map a coastal site dominated by seagrass, seaweed and kelp, in addition to sediments and rock. Such detailed but efficient mapping and classification can aid to understand and sustainably manage ecologically and valuable marine ecosystems.</div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215016124003868/pdfft?md5=b5bf87abe8a3328c495c2499d16bc229&pid=1-s2.0-S2215016124003868-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124003868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aerial drone imaging is an efficient tool for mapping and monitoring of coastal habitats at high spatial and temporal resolution. Specifically, drone imaging allows for time- and cost-efficient mapping covering larger areas than traditional mapping and monitoring techniques, while also providing more detailed information than those from airplanes and satellites, enabling for example to differentiate various types of coastal vegetation. Here, we present a systematic method for shallow water habitat classification based on drone imagery. The method includes:

  • Collection of drone images and creation of orthomosaics.

  • Gathering ground-truth data in the field to guide the image annotation and to validate the final map product.

  • Annotation of drone images into – potentially hierarchical – habitat classes and training of machine learning algorithms for habitat classification.

As a case study, we present a field campaign that employed these methods to map a coastal site dominated by seagrass, seaweed and kelp, in addition to sediments and rock. Such detailed but efficient mapping and classification can aid to understand and sustainably manage ecologically and valuable marine ecosystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机和地面实况数据收集、图像标注和机器学习:海岸栖息地绘图和分类协议
无人机航拍成像是以高空间和时间分辨率对沿岸生境进行测绘和监测的有效工具。具体来说,与传统的测绘和监测技术相比,无人机成像可以在更大的范围内进行测绘,既省时又省钱,同时还能提供比飞机和卫星更详细的信息,例如能够区分各种类型的沿岸植被。在此,我们介绍一种基于无人机图像的浅水生境分类系统方法。该方法包括:-采集无人机图像并创建正射影像图;-在现场收集地面实况数据,以指导图像注释并验证最终地图产品;-将无人机图像注释为可能分层的生境类别,并训练用于生境分类的机器学习算法。作为案例研究,我们介绍了一次现场活动,该活动采用这些方法绘制了以海草、海藻和海带为主的沿海地区地图,此外还有沉积物和岩石。这种详细而高效的绘图和分类有助于了解和可持续地管理具有生态价值的海洋生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊最新文献
ViT-HHO: Optimized vision transformer for diabetic retinopathy detection using Harris Hawk optimization Standardized lab-scale production of the recombinant fusion protein HUG for the nanoscale analysis of bilirubin The TOPSIS method: Figuring the landslide susceptibility using Excel and GIS A method to improve binary forecast skill verification Automated prediction of phosphorus concentration in soils using reflectance spectroscopy and machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1