Digital cancellation of multi-band passive inter-modulation based on Wiener-Hammerstein model

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS Digital Communications and Networks Pub Date : 2024-08-01 DOI:10.1016/j.dcan.2024.06.002
{"title":"Digital cancellation of multi-band passive inter-modulation based on Wiener-Hammerstein model","authors":"","doi":"10.1016/j.dcan.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing multi-band and multi-carrier techniques enhances throughput and capacity in Long-Term Evolution (LTE)-Advanced and 5G New Radio (NR) mobile networks. However, these techniques introduce Passive Inter-Modulation (PIM) interference in Frequency-Division Duplexing (FDD) systems. In this paper, a novel multi-band Wiener-Hammerstein model is presented to digitally reconstruct PIM interference signals, thereby achieving effective PIM Cancellation (PIMC) in multi-band scenarios. In the model, transmitted signals are independently processed to simulate Inter-Modulation Distortions (IMDs) and Cross-Modulation Distortions (CMDs). Furthermore, the Finite Impulse Response (FIR) filter, basis function generation, and B-spline function are applied for precise PIM product estimation and generation in multi-band scenarios. Simulations involving 4 carrier components from diverse NR frequency bands at varying transmitting powers validate the feasibility of the model for multi-band PIMC, achieving up to 19 dB in PIMC performance. Compared to other models, this approach offers superior PIMC performance, exceeding them by more than 5 dB in high transmitting power scenarios. Additionally, its lower sampling rate requirement reduces the hardware complexity associated with implementing multi-band PIMC.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864824000695/pdfft?md5=2a6267187794fafdb2d9a61eec6727df&pid=1-s2.0-S2352864824000695-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000695","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing multi-band and multi-carrier techniques enhances throughput and capacity in Long-Term Evolution (LTE)-Advanced and 5G New Radio (NR) mobile networks. However, these techniques introduce Passive Inter-Modulation (PIM) interference in Frequency-Division Duplexing (FDD) systems. In this paper, a novel multi-band Wiener-Hammerstein model is presented to digitally reconstruct PIM interference signals, thereby achieving effective PIM Cancellation (PIMC) in multi-band scenarios. In the model, transmitted signals are independently processed to simulate Inter-Modulation Distortions (IMDs) and Cross-Modulation Distortions (CMDs). Furthermore, the Finite Impulse Response (FIR) filter, basis function generation, and B-spline function are applied for precise PIM product estimation and generation in multi-band scenarios. Simulations involving 4 carrier components from diverse NR frequency bands at varying transmitting powers validate the feasibility of the model for multi-band PIMC, achieving up to 19 dB in PIMC performance. Compared to other models, this approach offers superior PIMC performance, exceeding them by more than 5 dB in high transmitting power scenarios. Additionally, its lower sampling rate requirement reduces the hardware complexity associated with implementing multi-band PIMC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Wiener-Hammerstein 模型的多波段无源互调数字消除技术
利用多频段和多载波技术可提高长期演进(LTE)-高级和 5G 新无线电(NR)移动网络的吞吐量和容量。然而,这些技术会在频分双工(FDD)系统中引入无源互调(PIM)干扰。本文提出了一种新颖的多频段 Wiener-Hammerstein 模型,用于以数字方式重建 PIM 干扰信号,从而在多频段场景中实现有效的 PIM 消除(PIMC)。在该模型中,传输信号经过独立处理,以模拟调制间失真(IMD)和交叉调制失真(CMD)。此外,还应用了有限脉冲响应(FIR)滤波器、基函数生成和 B-样条函数,以便在多频段情况下精确估计和生成 PIM 乘积。仿真涉及不同发射功率下不同 NR 频段的 4 个载波分量,验证了多频段 PIMC 模型的可行性,使 PIMC 性能提高了 19 dB。与其他模型相比,该方法的 PIMC 性能更优越,在高发射功率情况下超出其他模型 5 dB 以上。此外,它对采样率的要求较低,降低了实施多频段 PIMC 的硬件复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
期刊最新文献
Editorial Board Scheduling optimization for UAV communication coverage using virtual force-based PSO model Hybrid millimeter wave heterogeneous networks with spatially correlated user equipment A novel hybrid authentication protocol utilizing lattice-based cryptography for IoT devices in fog networks Data-driven human and bot recognition from web activity logs based on hybrid learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1