{"title":"One-step solvothermal synthesis of nitrogen-doped carbon dots with efficient red emission from conjugated perylene for multiple applications","authors":"","doi":"10.1016/j.carbon.2024.119601","DOIUrl":null,"url":null,"abstract":"<div><p>Despite its significance for applications related to plant growth, the development of carbon dots (CDs) with bright red emissions still faces multiple obstacles. Herein, red emission hydrophobic carbon dots (RH-CDs) featuring one emission peak centered at 594 nm and a shoulder emission peak at 630 nm with a quantum yield of 34 % and a wide full width at half maximum (FWHM) of 100 nm (580 nm–680 nm) were synthesized by adopting large conjugated perylene anhydride and aromatic amine precursors under solvothermal conditions. Density functional theory calculations support the method of using larger conjugated systems and higher graphite N doping to increase red emissions from CDs. With a post-surface functionalization strategy, polyvinylpyrrolidone (PVP)-modified RH-CDs (QY = 12 %) were utilized as an anti-counterfeiting ink for information printing. Moreover, both blue-red light-emitting diodes (LEDs) and light conversion poly (methyl methacrylate) (PMMA)-CDs film were fabricated with emission spectra that are consistent with the absorption spectra of plants, suggesting that the prepared RH-CDs may have widespread application potential as a stable fluorescent material in plant growth.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324008200","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite its significance for applications related to plant growth, the development of carbon dots (CDs) with bright red emissions still faces multiple obstacles. Herein, red emission hydrophobic carbon dots (RH-CDs) featuring one emission peak centered at 594 nm and a shoulder emission peak at 630 nm with a quantum yield of 34 % and a wide full width at half maximum (FWHM) of 100 nm (580 nm–680 nm) were synthesized by adopting large conjugated perylene anhydride and aromatic amine precursors under solvothermal conditions. Density functional theory calculations support the method of using larger conjugated systems and higher graphite N doping to increase red emissions from CDs. With a post-surface functionalization strategy, polyvinylpyrrolidone (PVP)-modified RH-CDs (QY = 12 %) were utilized as an anti-counterfeiting ink for information printing. Moreover, both blue-red light-emitting diodes (LEDs) and light conversion poly (methyl methacrylate) (PMMA)-CDs film were fabricated with emission spectra that are consistent with the absorption spectra of plants, suggesting that the prepared RH-CDs may have widespread application potential as a stable fluorescent material in plant growth.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.