{"title":"Automatic algorithm selection for Pseudo-Boolean optimization with given computational time limits","authors":"","doi":"10.1016/j.cor.2024.106836","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning (ML) techniques have been proposed to automatically select the best solver from a portfolio of solvers. They have been applied to various problems including Boolean Satisfiability, Traveling Salesperson and Graph Coloring. These techniques are used to implement <em>meta-solvers</em> that receive, as input, the instance of a problem, predict the best-performing solver in the portfolio, and execute it to deliver a solution. Typically, the quality of the solution improves with a longer computational time. This has led to the development of <em>anytime meta-solvers</em>, which consider both the instance and a user-prescribed computational time limit. <em>Anytime meta-solvers</em> predict the best-performing solver within the specified time limit. In this study, we focus on designing anytime meta-solvers for the NP-hard optimization problem of <em>Pseudo-Boolean Optimization</em> (PBO), which generalizes Satisfiability and Maximum Satisfiability problems. The effectiveness of our approach is demonstrated via extensive empirical study in which our anytime meta-solver, named PBO_MS, improves dramatically on the performance of Mixed Integer Programming solver Gurobi, which is the best-performing single solver in the portfolio. We generalize the anytime meta-solver by predicting a given number <span><math><mrow><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></math></span> of best solvers in the portfolio and then run these, each with equal share of the specified time limit. This anytime <span><math><mi>p</mi></math></span>-meta-solver is shown here to outperform both the anytime 1-meta-solver as well as a fixed selection of <span><math><mi>p</mi></math></span> solvers by a wide margin.</p></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003083","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) techniques have been proposed to automatically select the best solver from a portfolio of solvers. They have been applied to various problems including Boolean Satisfiability, Traveling Salesperson and Graph Coloring. These techniques are used to implement meta-solvers that receive, as input, the instance of a problem, predict the best-performing solver in the portfolio, and execute it to deliver a solution. Typically, the quality of the solution improves with a longer computational time. This has led to the development of anytime meta-solvers, which consider both the instance and a user-prescribed computational time limit. Anytime meta-solvers predict the best-performing solver within the specified time limit. In this study, we focus on designing anytime meta-solvers for the NP-hard optimization problem of Pseudo-Boolean Optimization (PBO), which generalizes Satisfiability and Maximum Satisfiability problems. The effectiveness of our approach is demonstrated via extensive empirical study in which our anytime meta-solver, named PBO_MS, improves dramatically on the performance of Mixed Integer Programming solver Gurobi, which is the best-performing single solver in the portfolio. We generalize the anytime meta-solver by predicting a given number of best solvers in the portfolio and then run these, each with equal share of the specified time limit. This anytime -meta-solver is shown here to outperform both the anytime 1-meta-solver as well as a fixed selection of solvers by a wide margin.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.