Carlos Sánchez-Aguilera, Rafael Hernández-Jiménez, Claudia Moreno
{"title":"ω-Cosmological Boundary Flux Parameter","authors":"Carlos Sánchez-Aguilera, Rafael Hernández-Jiménez, Claudia Moreno","doi":"10.1016/j.dark.2024.101638","DOIUrl":null,"url":null,"abstract":"<div><p>Efforts to explain the current accelerated expansion of the universe have prompted the investigation of different scenarios characterised by dark energy models. In this study, we explore an extended <span><math><mi>ω</mi></math></span>CBFP model, incorporating two commonly used parameterisations of <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in terms of the redshift <span><math><mi>z</mi></math></span>: <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>z</mi><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. In this context, the cosmological parameter <span><math><mi>Λ</mi></math></span> is directly linked to the dark matter component through a barotropic framework, where <span><math><mi>Λ</mi></math></span> acts as the source of <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi><mi>d</mi><mi>m</mi></mrow></msub></math></span>, characterised by a dimensionless constant <span><math><mi>λ</mi></math></span>, and directly dependent on <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>CDM</mi></mrow></msup></math></span>, which is fully defined by a specific <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> functional form. Through a statistical analysis, using late-time data of observational Hubble and type Ia Supernovae, we computed the joint best-fit value of the free parameters by means of the affine-invariant MCMC. On the one hand, the <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>CBFP instance shows an unexpected larger <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn><mspace></mspace><mi>c</mi><mi>d</mi><mi>m</mi></mrow></msub></math></span> contribution than the current <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn><mspace></mspace><mi>Λ</mi></mrow></msub></math></span>. Remarkably this outcome has not been previously reported (to our knowledge). On the other hand, in the <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>CBFP example the dark energy component makes up nearly 60% of the total matter-energy at <span><math><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow></math></span>, compared to just 36% for the cold dark matter contribution. This last result aligns more with the conventional <span><math><mi>Λ</mi></math></span>CDM model. In both instances there are unusual increases in <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi><mi>d</mi><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> around <span><math><mrow><mi>z</mi><mo>=</mo><mn>1</mn></mrow></math></span>; however, these rises are offset by a decrease in <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101638"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424002206","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Efforts to explain the current accelerated expansion of the universe have prompted the investigation of different scenarios characterised by dark energy models. In this study, we explore an extended CBFP model, incorporating two commonly used parameterisations of in terms of the redshift : and . In this context, the cosmological parameter is directly linked to the dark matter component through a barotropic framework, where acts as the source of , characterised by a dimensionless constant , and directly dependent on , which is fully defined by a specific functional form. Through a statistical analysis, using late-time data of observational Hubble and type Ia Supernovae, we computed the joint best-fit value of the free parameters by means of the affine-invariant MCMC. On the one hand, the CBFP instance shows an unexpected larger contribution than the current . Remarkably this outcome has not been previously reported (to our knowledge). On the other hand, in the CBFP example the dark energy component makes up nearly 60% of the total matter-energy at , compared to just 36% for the cold dark matter contribution. This last result aligns more with the conventional CDM model. In both instances there are unusual increases in around ; however, these rises are offset by a decrease in .
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.