Peiying Zhang , Ziyu Xu , Neeraj Kumar , Jian Wang , Lizhuang Tan , Ahmad Almogren
{"title":"Generative adversarial imitation learning assisted virtual network embedding algorithm for space-air-ground integrated network","authors":"Peiying Zhang , Ziyu Xu , Neeraj Kumar , Jian Wang , Lizhuang Tan , Ahmad Almogren","doi":"10.1016/j.comcom.2024.107936","DOIUrl":null,"url":null,"abstract":"<div><p>The space-air-ground integrated network (SAGIN) comprises a multitude of interconnected and integrated heterogeneous networks. Its network is large in scale, complex in structure, and highly dynamic. Virtual network embedding (VNE) is designed to efficiently allocate resources within the physical host to diverse virtual network requests (VNRs) with different constraints while improving the acceptance ratio of VNRs. However, in a heterogeneous SAGIN environment, improving the utilization of network resources while ensuring the performance of the VNE algorithm is a very challenging topic. To address the aforementioned issues, we first introduce a services diversion strategy (SDS) to select embedded nodes based on different service types and network state, thereby alleviating the uneven use of resources in different network domains. Subsequently, we propose a VNE algorithm (GAIL-VNE) based on generative adversarial imitation learning (GAIL). We construct a generator network based on the actor-critic architecture, which can generate the probability of physical nodes being embedded based on the observed network state. Secondly, we construct a discriminator network to distinguish between generator samples and expert samples, which aids in updating the generator network. After offline training, the generator and discriminator reach a Nash equilibrium through game confrontation. During the embedding process of VNRs, the output of the generator provides an effective basis for generating VNE solutions. Finally, we verify the effectiveness of this method through experiments involving offline training and online embedding.</p></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"228 ","pages":"Article 107936"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424002834","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The space-air-ground integrated network (SAGIN) comprises a multitude of interconnected and integrated heterogeneous networks. Its network is large in scale, complex in structure, and highly dynamic. Virtual network embedding (VNE) is designed to efficiently allocate resources within the physical host to diverse virtual network requests (VNRs) with different constraints while improving the acceptance ratio of VNRs. However, in a heterogeneous SAGIN environment, improving the utilization of network resources while ensuring the performance of the VNE algorithm is a very challenging topic. To address the aforementioned issues, we first introduce a services diversion strategy (SDS) to select embedded nodes based on different service types and network state, thereby alleviating the uneven use of resources in different network domains. Subsequently, we propose a VNE algorithm (GAIL-VNE) based on generative adversarial imitation learning (GAIL). We construct a generator network based on the actor-critic architecture, which can generate the probability of physical nodes being embedded based on the observed network state. Secondly, we construct a discriminator network to distinguish between generator samples and expert samples, which aids in updating the generator network. After offline training, the generator and discriminator reach a Nash equilibrium through game confrontation. During the embedding process of VNRs, the output of the generator provides an effective basis for generating VNE solutions. Finally, we verify the effectiveness of this method through experiments involving offline training and online embedding.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.