Development of multi aluminium foam-filled crash box systems to improve crashworthiness performance of road Service vehicle

IF 4.4 2区 工程技术 Q1 MECHANICS European Journal of Mechanics A-Solids Pub Date : 2024-09-03 DOI:10.1016/j.euromechsol.2024.105433
A. De Biasio , H. Ghasemnejad , S. Srimanosaowapak , J.W. Watson
{"title":"Development of multi aluminium foam-filled crash box systems to improve crashworthiness performance of road Service vehicle","authors":"A. De Biasio ,&nbsp;H. Ghasemnejad ,&nbsp;S. Srimanosaowapak ,&nbsp;J.W. Watson","doi":"10.1016/j.euromechsol.2024.105433","DOIUrl":null,"url":null,"abstract":"<div><p>Honeycomb crash absorbers are known as mechanical energy-absorbing systems in both automotive and aerospace industries. However, the gap of knowledge in the transverse impacts of multi-foam-filled or stiffener-reinforced honeycombs is still unfilled. This paper investigates the energy absorption process in large crash boxes applied onto a road maintenance vehicle, exploring four aluminium honeycomb absorbers with design factors like added aluminium foam, corrugated sheet thicknesses, and stiffener reinforcements. The optimised foam-filled honeycomb structures are analysed for four crash scenarios in two different directions; frontal impact (T-direction) and lateral impact (L-direction) subjected to 50 km/h crash speed. The objective of this research is to identify the most efficient design that achieves a maximum acceleration of up to 20g while absorbing a specific energy of 145 kJ. The FE models were developed in ABAQUS to explore various scenarios related to damage zones, impact energy capabilities, and multi-foam-filled crash boxes. Finally, the lightest design of honeycomb absorbers which can maximise energy absorption while maintaining acceleration below the specified threshold of 20g will be recommended.</p></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"109 ","pages":"Article 105433"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997753824002134/pdfft?md5=2b9040cfcfb3c23806848d95cd7cadfb&pid=1-s2.0-S0997753824002134-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824002134","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Honeycomb crash absorbers are known as mechanical energy-absorbing systems in both automotive and aerospace industries. However, the gap of knowledge in the transverse impacts of multi-foam-filled or stiffener-reinforced honeycombs is still unfilled. This paper investigates the energy absorption process in large crash boxes applied onto a road maintenance vehicle, exploring four aluminium honeycomb absorbers with design factors like added aluminium foam, corrugated sheet thicknesses, and stiffener reinforcements. The optimised foam-filled honeycomb structures are analysed for four crash scenarios in two different directions; frontal impact (T-direction) and lateral impact (L-direction) subjected to 50 km/h crash speed. The objective of this research is to identify the most efficient design that achieves a maximum acceleration of up to 20g while absorbing a specific energy of 145 kJ. The FE models were developed in ABAQUS to explore various scenarios related to damage zones, impact energy capabilities, and multi-foam-filled crash boxes. Finally, the lightest design of honeycomb absorbers which can maximise energy absorption while maintaining acceleration below the specified threshold of 20g will be recommended.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发多铝泡沫填充防撞箱系统,提高公路服务车辆的防撞性能
众所周知,蜂窝式碰撞吸收器是汽车和航空航天工业中的机械吸能系统。然而,在多泡沫填充或加强型蜂窝的横向冲击方面的知识仍然空白。本文研究了应用于道路养护车辆的大型碰撞箱的能量吸收过程,探讨了四种铝蜂窝吸收器的设计因素,如添加的铝泡沫、波纹板厚度和加强筋。优化后的泡沫填充蜂窝结构针对两种不同方向的四种碰撞情况进行了分析:正面碰撞(T 方向)和侧面碰撞(L 方向),碰撞速度为 50 公里/小时。这项研究的目的是确定最有效的设计,以实现最大加速度达 20g,同时吸收 145 kJ 的特定能量。在 ABAQUS 中开发了有限元模型,以探索与损坏区域、冲击能量能力和多泡沫填充碰撞箱相关的各种情况。最后,将推荐既能最大限度吸收能量,又能将加速度保持在 20g 临界值以下的最轻蜂窝吸收器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
期刊最新文献
Atomistic investigation of interface adherence mechanism of structural indenter nanocoining single crystal aluminum Research on mechanical behavior of particle/matrix interface in composite solid propellant Vibration suppression of suspended cables with three-to-one internal resonances via time-delay feedback Determination of material constants of piezoceramics using genetic algorithm Vibration response of nanobeams subjected to random reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1