Security experimental framework of trajectory planning for autonomous vehicles

Sujoud Al-sheyab , Zakarea Al-shara , Osama Al-khaleel
{"title":"Security experimental framework of trajectory planning for autonomous vehicles","authors":"Sujoud Al-sheyab ,&nbsp;Zakarea Al-shara ,&nbsp;Osama Al-khaleel","doi":"10.1016/j.ijin.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>In the contemporary landscape, autonomous vehicles (AVs) have emerged as a prominent technological advancement globally. Despite their widespread adoption, significant hurdles remain, with security standing out as a critical concern. The potential for attacks within AV networks, exemplified by the Trajectory Privacy Attack on Autonomous Driving (T-PAAD), underscores the urgency for robust security measures. Unfortunately, existing simulations for preemptively assessing the T-PAAD attack's impact are scarce. This paper introduces the Security Experimental Framework for Autonomous Vehicles (SEFAV), designed to address this gap by providing a versatile platform for simulating security scenarios in AV environments. SEFAV is cross-platform and compatible with different operating systems such as Windows and Linux, enhancing accessibility for researchers and practitioners. Our primary focus lies in showcasing the T-PAAD attack within our framework, highlighting its efficacy in evaluating and fortifying AV security.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 315-324"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603024000307/pdfft?md5=892f01ae9891afc0fe2026f438b5a155&pid=1-s2.0-S2666603024000307-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603024000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the contemporary landscape, autonomous vehicles (AVs) have emerged as a prominent technological advancement globally. Despite their widespread adoption, significant hurdles remain, with security standing out as a critical concern. The potential for attacks within AV networks, exemplified by the Trajectory Privacy Attack on Autonomous Driving (T-PAAD), underscores the urgency for robust security measures. Unfortunately, existing simulations for preemptively assessing the T-PAAD attack's impact are scarce. This paper introduces the Security Experimental Framework for Autonomous Vehicles (SEFAV), designed to address this gap by providing a versatile platform for simulating security scenarios in AV environments. SEFAV is cross-platform and compatible with different operating systems such as Windows and Linux, enhancing accessibility for researchers and practitioners. Our primary focus lies in showcasing the T-PAAD attack within our framework, highlighting its efficacy in evaluating and fortifying AV security.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动驾驶汽车轨迹规划安全实验框架
在当今时代,自动驾驶汽车(AVs)已成为全球范围内一项突出的技术进步。尽管自动驾驶汽车被广泛采用,但仍存在重大障碍,其中安全问题尤为突出。自动驾驶汽车的轨迹隐私攻击(T-PAAD)就是自动驾驶汽车网络中潜在攻击的一个例子,这凸显了采取强有力的安全措施的紧迫性。遗憾的是,用于预先评估 T-PAAD 攻击影响的现有模拟很少。本文介绍了自动驾驶汽车安全实验框架(SEFAV),旨在通过提供一个多功能平台来模拟自动驾驶汽车环境中的安全场景,从而填补这一空白。SEFAV 跨平台,兼容 Windows 和 Linux 等不同操作系统,提高了研究人员和从业人员的可访问性。我们的主要重点是在我们的框架内展示 T-PAAD 攻击,突出其在评估和加强防病毒安全方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
A collaborative framework for rapid fault repair and service restoration in distribution networks Designing a novel network anomaly detection framework using multi-serial stacked network with optimal feature selection procedures over DDOS attacks Infrared spectral imaging-based image recognition for motion detection Online and offline collaborative abnormal traffic intelligent detection system based on elastic lightweight width learning algorithm Resource optimization algorithm for 5G core network integrating NFV and SDN technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1