{"title":"A quadrature method for Volterra integral equations with highly oscillatory Bessel kernel","authors":"Longbin Zhao , Pengde Wang , Qiongqi Fan","doi":"10.1016/j.matcom.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>To avoid computing moments, this work adopts generalized quadrature method for Volterra integral equations with highly oscillatory Bessel kernel. At first, we study the influence of the interval length and frequency in detail after recalling the construction of the quadrature method. Then, the two-point quadrature method is employed for the equation. By estimating the weights, we could guarantee that the discretized equation is solvable. For its convergence, our analysis shows that the proposed method enjoys asymptotic order <span><math><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></math></span> and as <span><math><mi>h</mi></math></span> decreases it converges with order 2 as well. Some numerical illustrations are provided to test the method in the numerical part.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003483","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To avoid computing moments, this work adopts generalized quadrature method for Volterra integral equations with highly oscillatory Bessel kernel. At first, we study the influence of the interval length and frequency in detail after recalling the construction of the quadrature method. Then, the two-point quadrature method is employed for the equation. By estimating the weights, we could guarantee that the discretized equation is solvable. For its convergence, our analysis shows that the proposed method enjoys asymptotic order and as decreases it converges with order 2 as well. Some numerical illustrations are provided to test the method in the numerical part.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.