Mixed-integer linear programming and composed heuristics for three-stage remanufacturing system scheduling problem

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-09-05 DOI:10.1016/j.engappai.2024.109257
{"title":"Mixed-integer linear programming and composed heuristics for three-stage remanufacturing system scheduling problem","authors":"","doi":"10.1016/j.engappai.2024.109257","DOIUrl":null,"url":null,"abstract":"<div><p>The three-stage remanufacturing system scheduling problem (3T-RSSP) has been a hot research topic recently. The remanufacturing system in this paper is equipped with a novel configuration of unrelated parallel disassembly/reassembly workstations and parallel dedicated flow-shop-type reprocessing lines. To this end, a mixed-integer linear programming (MILP) model based on the adjacent sequence-based modeling idea is first proposed to address the 3T-RSSP for a makespan minimization. Compared with other ideas, the adjacent sequence-based modeling idea is effective in deciding precedence relationship between two adjacent operations, especially for the investigated 3T-RSSP. The 3T-RSSP is NP (non-deterministic polynomial)-hard, we also design 18 composed heuristics for large-sized problems to gain a better performance, compared to traditional isolated heuristics. Simulation experiments are carried out on a publicly available dataset to test the performance the MILP model and composed heuristics. Results imply that the MILP model solved by CPLEX can seek optimum solutions within a short time when the problem size is small. It is found that when problem size becomes 2.0, 4.0, 8.0 times large, performance indicators NCs (number of constraints) and NBVs (number of binary variables) of the model become 3.29, 11.81, 44.60 and 3.43, 12.57, 48.00 times large. Besides, compared with other composed heuristics, LTRT-F (longest total reprocessing time-first available machine) gains the best performance. Instance P5-C3-D2/A2 is selected to quantitatively analyze the MILP model by presenting the detailed 0–1 binary variable values. Finally, by comparing with position-based MILP model, the adjacent sequence-based MILP model has better performance in characterizing the investigated 3T-RSSP.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624014155","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The three-stage remanufacturing system scheduling problem (3T-RSSP) has been a hot research topic recently. The remanufacturing system in this paper is equipped with a novel configuration of unrelated parallel disassembly/reassembly workstations and parallel dedicated flow-shop-type reprocessing lines. To this end, a mixed-integer linear programming (MILP) model based on the adjacent sequence-based modeling idea is first proposed to address the 3T-RSSP for a makespan minimization. Compared with other ideas, the adjacent sequence-based modeling idea is effective in deciding precedence relationship between two adjacent operations, especially for the investigated 3T-RSSP. The 3T-RSSP is NP (non-deterministic polynomial)-hard, we also design 18 composed heuristics for large-sized problems to gain a better performance, compared to traditional isolated heuristics. Simulation experiments are carried out on a publicly available dataset to test the performance the MILP model and composed heuristics. Results imply that the MILP model solved by CPLEX can seek optimum solutions within a short time when the problem size is small. It is found that when problem size becomes 2.0, 4.0, 8.0 times large, performance indicators NCs (number of constraints) and NBVs (number of binary variables) of the model become 3.29, 11.81, 44.60 and 3.43, 12.57, 48.00 times large. Besides, compared with other composed heuristics, LTRT-F (longest total reprocessing time-first available machine) gains the best performance. Instance P5-C3-D2/A2 is selected to quantitatively analyze the MILP model by presenting the detailed 0–1 binary variable values. Finally, by comparing with position-based MILP model, the adjacent sequence-based MILP model has better performance in characterizing the investigated 3T-RSSP.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三阶段再制造系统调度问题的混合整数线性规划和组成启发式方法
三阶段再制造系统调度问题(3T-RSSP)是近期的研究热点。本文中的再制造系统采用了一种新颖的配置,即不相关的并行拆卸/再组装工作站和并行专用流水线式再加工生产线。为此,本文首先提出了一种基于相邻序列建模思想的混合整数线性规划(MILP)模型,以解决工期最小化的 3T-RSSP 问题。与其他思想相比,基于相邻序列的建模思想能有效决定相邻两个操作之间的优先级关系,特别是对于所研究的 3T-RSSP 而言。3T-RSSP 是一个 NP(非确定性多项式)困难问题,与传统的孤立启发式相比,我们还针对大型问题设计了 18 种组合启发式,以获得更好的性能。我们在公开数据集上进行了仿真实验,以测试 MILP 模型和组合启发式算法的性能。结果表明,当问题规模较小时,CPLEX 求解的 MILP 模型能在短时间内找到最优解。结果发现,当问题规模变大到 2.0、4.0、8.0 倍时,模型的性能指标 NCs(约束条件数)和 NBVs(二元变量数)分别变大到 3.29、11.81、44.60 倍和 3.43、12.57、48.00 倍。此外,与其他启发式相比,LTRT-F(最长总再处理时间-第一台可用机器)的性能最好。选择实例 P5-C3-D2/A2,通过详细的 0-1 二进制变量值对 MILP 模型进行定量分析。最后,与基于位置的 MILP 模型相比,基于相邻序列的 MILP 模型在表征所研究的 3T-RSSP 方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Solving the imbalanced dataset problem in surveillance image blur classification An interpretable precursor-driven hierarchical model for predictive aircraft safety Predictive resilience assessment featuring diffusion reconstruction for road networks under rainfall disturbances A novel solution for routing a swarm of drones operated on a mobile host Correlation mining of multimodal features based on higher-order partial least squares for emotion recognition in conversations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1