Patterns of Resident Activity and Their Impact on Environmental Parameters in Residential Apartments: Case Study and Implications for Design and Management
Xiaodong Wang, Yang Lv, Wenjian Luo, Xianghao Duan
{"title":"Patterns of Resident Activity and Their Impact on Environmental Parameters in Residential Apartments: Case Study and Implications for Design and Management","authors":"Xiaodong Wang, Yang Lv, Wenjian Luo, Xianghao Duan","doi":"10.1155/2024/4404849","DOIUrl":null,"url":null,"abstract":"<p>In the quest to optimize residential environments for health and sustainability, understanding the interaction between pedestrian dynamics and environmental parameters is crucial. This study delves into this intersection by conducting a detailed spatial-temporal analysis within an apartment building. The research reveals pivotal insights about the relationship between pedestrian flow and environmental quality. Key findings reveal distinct patterns in pedestrian traffic, with two main peaks in early morning and late evening, accounting for approximately 24% of daily movement. The study identifies a pronounced preference for upward elevator use, reflecting residents’ lifestyle and floor-level choices. Importantly, we observed variable correlations between pedestrian flow and environmental pollutants. Pollutants like PM<sub>2.5</sub> and carbon monoxide exhibited weak correlations, while noise, TVOC, formaldehyde, and ozone showed stronger associations with human movement. The research uncovered significant spatial differences in pollutant levels across the building, with higher particulate matter and ozone levels in the seventh-floor elevator room. The data suggest a need for tailored pollution management strategies, especially for noise and hazardous compounds like formaldehyde and ozone, which exceed safety limits in certain areas. Our findings offer critical insights for the design and management of residential environments, emphasizing the importance of considering both pedestrian flow and environmental factors in optimizing living spaces for health and efficiency.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4404849","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4404849","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the quest to optimize residential environments for health and sustainability, understanding the interaction between pedestrian dynamics and environmental parameters is crucial. This study delves into this intersection by conducting a detailed spatial-temporal analysis within an apartment building. The research reveals pivotal insights about the relationship between pedestrian flow and environmental quality. Key findings reveal distinct patterns in pedestrian traffic, with two main peaks in early morning and late evening, accounting for approximately 24% of daily movement. The study identifies a pronounced preference for upward elevator use, reflecting residents’ lifestyle and floor-level choices. Importantly, we observed variable correlations between pedestrian flow and environmental pollutants. Pollutants like PM2.5 and carbon monoxide exhibited weak correlations, while noise, TVOC, formaldehyde, and ozone showed stronger associations with human movement. The research uncovered significant spatial differences in pollutant levels across the building, with higher particulate matter and ozone levels in the seventh-floor elevator room. The data suggest a need for tailored pollution management strategies, especially for noise and hazardous compounds like formaldehyde and ozone, which exceed safety limits in certain areas. Our findings offer critical insights for the design and management of residential environments, emphasizing the importance of considering both pedestrian flow and environmental factors in optimizing living spaces for health and efficiency.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.