Diffuse Auroral Emissions Driven by Electron Cyclotron Harmonic Waves at Jupiter

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2024-09-04 DOI:10.1029/2024JA032539
Arvind K. Tripathi, Rajendra P. Singhal, Ashish K. Mishra
{"title":"Diffuse Auroral Emissions Driven by Electron Cyclotron Harmonic Waves at Jupiter","authors":"Arvind K. Tripathi,&nbsp;Rajendra P. Singhal,&nbsp;Ashish K. Mishra","doi":"10.1029/2024JA032539","DOIUrl":null,"url":null,"abstract":"<p>In the present work we have modeled diffuse auroral emissions in Jupiter using the recent observations received by JUNO orbiter. Resonant wave-particle interaction by electron-cyclotron harmonic (ECH) waves has been invoked as the mechanism for production of diffuse aurora. Energetic electrons trapped on closed field lines are diffused into the loss-cone via pitch-angle diffusion. Electron precipitation fluxes have been calculated. Electrons entering into the atmosphere undergo collisions with atmospheric constituents atomic H and molecular H<sub>2</sub> producing electromagnetic emissions. Four excitations have been considered. These excitations are: HLy-α from excitation of atomic H, HLy-α from dissociative excitation of molecular H<sub>2</sub>, Lyman and Werner bands of H<sub>2</sub>. Volume excitation rates have been calculated for these excitations. Height integrated volume excitation rates have been obtained to give auroral intensities. Numerical calculations have been performed at five L-shells; L = 10, 12, 15, 18 and 20. Maximum auroral intensities is obtained at shell L = 10. At higher shell L = 20 the intensity value reduces to a minimum. The intensities in Rayleigh (R) for HLy-α from H, HLy-α from H<sub>2</sub>, Lyman and Werner bands of H<sub>2</sub> are calculated. Comparing these intensities with the diffuse auroral intensities observed at Saturn, it is found that the intensities at Jupiter are higher than the values predicted for Saturn. We have also calculated volume ionization rates for atomic H producing H<sup>+</sup>, dissociative ionization of H<sub>2</sub> producing H<sup>+</sup>, and ionization of H<sub>2</sub> producing H<sub>2</sub><sup>+</sup>. The continuity equation is solved to obtain the electron density Outcomes are discussed.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032539","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work we have modeled diffuse auroral emissions in Jupiter using the recent observations received by JUNO orbiter. Resonant wave-particle interaction by electron-cyclotron harmonic (ECH) waves has been invoked as the mechanism for production of diffuse aurora. Energetic electrons trapped on closed field lines are diffused into the loss-cone via pitch-angle diffusion. Electron precipitation fluxes have been calculated. Electrons entering into the atmosphere undergo collisions with atmospheric constituents atomic H and molecular H2 producing electromagnetic emissions. Four excitations have been considered. These excitations are: HLy-α from excitation of atomic H, HLy-α from dissociative excitation of molecular H2, Lyman and Werner bands of H2. Volume excitation rates have been calculated for these excitations. Height integrated volume excitation rates have been obtained to give auroral intensities. Numerical calculations have been performed at five L-shells; L = 10, 12, 15, 18 and 20. Maximum auroral intensities is obtained at shell L = 10. At higher shell L = 20 the intensity value reduces to a minimum. The intensities in Rayleigh (R) for HLy-α from H, HLy-α from H2, Lyman and Werner bands of H2 are calculated. Comparing these intensities with the diffuse auroral intensities observed at Saturn, it is found that the intensities at Jupiter are higher than the values predicted for Saturn. We have also calculated volume ionization rates for atomic H producing H+, dissociative ionization of H2 producing H+, and ionization of H2 producing H2+. The continuity equation is solved to obtain the electron density Outcomes are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木星电子回旋谐波驱动的漫射极光发射
在本研究中,我们利用 "联合 "号轨道器最近的观测结果,对木星的漫射极光辐射进行了建模。电子-回旋谐波(ECH)的共振波-粒子相互作用被认为是弥漫极光的产生机制。被困在封闭场线上的高能电子通过俯仰角扩散进入损耗锥。电子析出通量已经计算出来。进入大气层的电子与大气成分原子 H 和分子 H2 发生碰撞,产生电磁辐射。我们考虑了四种激发。它们是原子 H 激发产生的 HLy-α、分子 H2 的离解激发产生的 HLy-α、H2 的莱曼带和沃纳带。计算了这些激发的体积激发率。根据高度积分体积激发率得出极光强度。在五个 L 壳(L = 10、12、15、18 和 20)下进行了数值计算。L = 10 时极光强度最大。在较高的 L = 20 时,强度值降至最低。计算了 H 的 HLy-α、H2 的 HLy-α、H2 的莱曼和韦纳波段的瑞利(R)强度。将这些强度与在土星观测到的漫射极光强度进行比较,发现木星的强度高于土星的预测值。我们还计算了产生 H+ 的原子 H 的体积电离率、产生 H+ 的 H2 的离解电离率以及产生 H2+ 的 H2 的电离率。通过对连续性方程的求解,我们得到了电子密度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
One-Step Local Acceleration Process of Ultra-Relativistic Electrons in the Center of the Outer Radiation Belt: Observations Particle Simulation Study of Obliquely Propagating Whistler Waves in Low-Beta Plasmas Total Magnetic Field Perturbations at Martian Low Altitudes (≤500 km): MAVEN Observations in 2014–2023 On the Association of Substorm Identification Methods Study of Ionospheric Equatorial Plasma Bubbles Based on GOLD Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1