{"title":"Off-Shelf Transport and Biogeochemical Cycling of Terrestrial Organic Carbon Along the East Siberian Continental Margin","authors":"Jannik Martens, Tommaso Tesi, Valeriy Rusakov, Igor Semiletov, Oleg Dudarev, Örjan Gustafsson","doi":"10.1029/2024GB008104","DOIUrl":null,"url":null,"abstract":"<p>Continental margins receive, process and sequester most of the terrestrial organic carbon (terrOC) released into the ocean. In the Arctic, increasing fluvial discharge and collapsing permafrost are expected to enhance terrOC release and degradation, leading to ocean acidification and translocated CO<sub>2</sub> release to the atmosphere. However, the processes controlling terrOC transport beyond the continental shelf, and the amount of terrOC that reaches the slope and the rise are poorly described. Here we study terrOC transport to the Laptev Sea continental slope and rise by probing surface sediments with dual-isotope (δ<sup>13</sup>C/Δ<sup>14</sup>C) source apportionment, degradation-diagnostic terrestrial biomarkers (<i>n</i>-alkanes, <i>n</i>-alkanoic acids, lignin phenols) and <sup>210</sup>Pb<sub>xs</sub>-based mass accumulation rates (MAR). The MAR-terrOC (g m<sup>−2</sup> yr<sup>−1</sup>) decrease from 14.7 ± 12.2 on the shelf, to 7.0 ± 5.8 over the slope, to 2.3 ± 0.3 for the rise. Scaling this to the respective regimes yields that 80% of the terrOC accumulates on the shelf, while 11% and 9% of the accumulation occurs in slope and rise sediments, respectively. TerrOC remineralization is evidenced by biomarker degradation proxies (CPI of <i>n</i>-alkanes and 3,5Bd/V) indicating 40% and 60% more terrOC degradation from slope to rise, consistent with a decline in terrOC concentrations by 57%. TerrOC degradation only partially explains this decline. An updated Laptev Sea terrOC budget suggests that sediment transport dynamics such as turbidity currents may drive terrOC shelf-basin export, contributing to the observed accumulation pattern. This study quantitatively demonstrates that Arctic shelf seas are key receptor systems for remobilized terrOC, emphasizing their importance in the carbon cycle of the rapidly changing Arctic.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008104","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008104","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Continental margins receive, process and sequester most of the terrestrial organic carbon (terrOC) released into the ocean. In the Arctic, increasing fluvial discharge and collapsing permafrost are expected to enhance terrOC release and degradation, leading to ocean acidification and translocated CO2 release to the atmosphere. However, the processes controlling terrOC transport beyond the continental shelf, and the amount of terrOC that reaches the slope and the rise are poorly described. Here we study terrOC transport to the Laptev Sea continental slope and rise by probing surface sediments with dual-isotope (δ13C/Δ14C) source apportionment, degradation-diagnostic terrestrial biomarkers (n-alkanes, n-alkanoic acids, lignin phenols) and 210Pbxs-based mass accumulation rates (MAR). The MAR-terrOC (g m−2 yr−1) decrease from 14.7 ± 12.2 on the shelf, to 7.0 ± 5.8 over the slope, to 2.3 ± 0.3 for the rise. Scaling this to the respective regimes yields that 80% of the terrOC accumulates on the shelf, while 11% and 9% of the accumulation occurs in slope and rise sediments, respectively. TerrOC remineralization is evidenced by biomarker degradation proxies (CPI of n-alkanes and 3,5Bd/V) indicating 40% and 60% more terrOC degradation from slope to rise, consistent with a decline in terrOC concentrations by 57%. TerrOC degradation only partially explains this decline. An updated Laptev Sea terrOC budget suggests that sediment transport dynamics such as turbidity currents may drive terrOC shelf-basin export, contributing to the observed accumulation pattern. This study quantitatively demonstrates that Arctic shelf seas are key receptor systems for remobilized terrOC, emphasizing their importance in the carbon cycle of the rapidly changing Arctic.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.