Interaction of defects, martensitic transformation and slip in metastable body centred cubic crystals of Ti-10V-2Fe-3Al: A study via crystal plasticity finite element methods (CPFEM)

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Damage Mechanics Pub Date : 2024-09-07 DOI:10.1177/10567895241275373
P Christie, MA Siddiq, RM McMeeking, ME Kartal
{"title":"Interaction of defects, martensitic transformation and slip in metastable body centred cubic crystals of Ti-10V-2Fe-3Al: A study via crystal plasticity finite element methods (CPFEM)","authors":"P Christie, MA Siddiq, RM McMeeking, ME Kartal","doi":"10.1177/10567895241275373","DOIUrl":null,"url":null,"abstract":"Metastable β titanium alloys are widely applied in many industries. These alloys can have plastic deformation via dislocation slip, twinning, stress-induced martensite (SIM), or a combination of these. These alloys fail in a ductile manner via a process of void nucleation, growth, and coalescence. Inherent defects, such as voids, are commonly attributed to poor mechanical properties. In this study, aspects of plastic anisotropy in damage accumulation are investigated for metastable crystals that deform by combined slip and SIM. The focus of this study is to understand the evolution of damage due to inherent voids in metastable Ti-10V-2Fe-3Al single crystals. This investigation is conducted using crystal plasticity-based 3D finite element (FE) calculations. A unit-cell FE model involving a spherical void is deformed under constant stress triaxiality and lode parameter. We investigated four triaxiality values at differing lode parameters in three crystal orientations. The void growth was found to be heavily dependent on crystal orientation at low triaxialities. At higher triaxialities, SIM is found to inhibit the void growth via accommodation of the required deformation in the surrounding material. Orientations aligned favourable with SIM undergo significantly less void growth. The accommodation of deformation in the surrounding matrix was found to help preserve the integrity of the void, preventing the localisation of deformation around the void. At lower lode parameter and at higher stress triaxiality this impedes the exponential growth of the void. While, at higher lode parameter with low triaxiality SIM was found to delay the collapse of the void into a crack like morphology. This study not only deepens our understanding of the mechanical behaviour of metastable β titanium alloys, but also unveils the complex interplay between inherent defects, stress-induced martensite, and slip-based plasticity within their crystalline structure, offering fresh perspectives on enhancing material performance.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"21 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241275373","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metastable β titanium alloys are widely applied in many industries. These alloys can have plastic deformation via dislocation slip, twinning, stress-induced martensite (SIM), or a combination of these. These alloys fail in a ductile manner via a process of void nucleation, growth, and coalescence. Inherent defects, such as voids, are commonly attributed to poor mechanical properties. In this study, aspects of plastic anisotropy in damage accumulation are investigated for metastable crystals that deform by combined slip and SIM. The focus of this study is to understand the evolution of damage due to inherent voids in metastable Ti-10V-2Fe-3Al single crystals. This investigation is conducted using crystal plasticity-based 3D finite element (FE) calculations. A unit-cell FE model involving a spherical void is deformed under constant stress triaxiality and lode parameter. We investigated four triaxiality values at differing lode parameters in three crystal orientations. The void growth was found to be heavily dependent on crystal orientation at low triaxialities. At higher triaxialities, SIM is found to inhibit the void growth via accommodation of the required deformation in the surrounding material. Orientations aligned favourable with SIM undergo significantly less void growth. The accommodation of deformation in the surrounding matrix was found to help preserve the integrity of the void, preventing the localisation of deformation around the void. At lower lode parameter and at higher stress triaxiality this impedes the exponential growth of the void. While, at higher lode parameter with low triaxiality SIM was found to delay the collapse of the void into a crack like morphology. This study not only deepens our understanding of the mechanical behaviour of metastable β titanium alloys, but also unveils the complex interplay between inherent defects, stress-induced martensite, and slip-based plasticity within their crystalline structure, offering fresh perspectives on enhancing material performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ti-10V-2Fe-3Al 可转移体心立方晶体中缺陷、马氏体转变和滑移的相互作用:通过晶体塑性有限元方法(CPFEM)进行的研究
可变β钛合金广泛应用于许多行业。这些合金可通过位错滑移、孪晶、应力诱发马氏体(SIM)或这些因素的组合产生塑性变形。这些合金通过空洞成核、生长和凝聚过程以韧性方式失效。空洞等固有缺陷通常是造成机械性能低下的原因。在本研究中,我们研究了通过滑移和 SIM 组合变形的可移动晶体在损伤累积过程中的塑性各向异性。本研究的重点是了解可蜕变 Ti-10V-2Fe-3Al 单晶中固有空隙导致的损伤演变。这项研究采用了基于晶体塑性的三维有限元(FE)计算。涉及球形空隙的单元单元 FE 模型在恒定应力三轴度和节点参数下发生变形。我们研究了三种晶体取向下不同节点参数下的四个三轴度值。结果发现,在较低的三轴度下,空隙的增长在很大程度上取决于晶体的取向。在较高的三轴度下,我们发现 SIM 可通过容纳周围材料所需的变形来抑制空隙增长。与 SIM 有利的取向排列会大大减少空隙的增长。研究发现,周围基体对变形的容纳有助于保持空隙的完整性,防止空隙周围变形的局部化。在较低的节点参数和较高的三轴应力条件下,这阻碍了空隙的指数增长。而在较高的节点参数和较低的三轴度条件下,SIM 则会延迟空隙塌陷,形成类似裂缝的形态。这项研究不仅加深了我们对可蜕变 β 钛合金机械性能的理解,还揭示了其晶体结构中固有缺陷、应力诱导马氏体和滑移塑性之间复杂的相互作用,为提高材料性能提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Formulation and verification of an anisotropic damage plasticity constitutive model for plain concrete On effective moduli of defective beam lattices via the lattice green’s functions Multi-scale study on the fatigue mechanical properties and energy laws of thermal-damage granite under fatigue loading A comparative study on combined high and low cycle fatigue life prediction model considering loading interaction Micro-damage instability mechanisms in composite materials: Cracking coalescence versus fibre ductility and slippage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1