Partitioning behavior of short DNA fragments in polymer/salt aqueous two-phase systems

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Biotechnology Journal Pub Date : 2024-09-09 DOI:10.1002/biot.202400394
Rafaela Meutelet, Lea J. Bisch, Benedikt C. Buerfent, Markus Müller, Jürgen Hubbuch
{"title":"Partitioning behavior of short DNA fragments in polymer/salt aqueous two-phase systems","authors":"Rafaela Meutelet,&nbsp;Lea J. Bisch,&nbsp;Benedikt C. Buerfent,&nbsp;Markus Müller,&nbsp;Jürgen Hubbuch","doi":"10.1002/biot.202400394","DOIUrl":null,"url":null,"abstract":"<p>The development of liquid biopsy as a minimally invasive technique for tumor profiling has created a need for efficient biomarker extraction systems from body fluids. The analysis of circulating cell-free DNA (cfDNA) is especially promising, but the low amounts and high fragmentation of cfDNA found in plasma pose challenges to its isolation. While the potential of aqueous two-phase systems (ATPS) for the extraction and purification of various biomolecules has already been successfully established, there is limited literature on the applicability of these findings to short cfDNA-like fragments. This study presents the partitioning behavior of a 160 bp DNA fragment in polyethylene glycol (PEG)/salt ATPS at pH 7.4. The effect of PEG molecular weight, tie-line length, neutral salt additives, and phase volume ratio is evaluated to maximize DNA recovery. Selected ATPS containing a synthetic plasma solution spiked with human serum albumin and immunoglobulin G are tested to determine the separation of DNA fragments from the main plasma protein fraction. By adding 1.5% (w/w) NaCl to a 17.7% (w/w) PEG 400/17.3% (w/w) phosphate ATPS, 88% DNA recovery was achieved in the salt-rich bottom phase while over 99% of the protein was removed.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400394","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400394","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of liquid biopsy as a minimally invasive technique for tumor profiling has created a need for efficient biomarker extraction systems from body fluids. The analysis of circulating cell-free DNA (cfDNA) is especially promising, but the low amounts and high fragmentation of cfDNA found in plasma pose challenges to its isolation. While the potential of aqueous two-phase systems (ATPS) for the extraction and purification of various biomolecules has already been successfully established, there is limited literature on the applicability of these findings to short cfDNA-like fragments. This study presents the partitioning behavior of a 160 bp DNA fragment in polyethylene glycol (PEG)/salt ATPS at pH 7.4. The effect of PEG molecular weight, tie-line length, neutral salt additives, and phase volume ratio is evaluated to maximize DNA recovery. Selected ATPS containing a synthetic plasma solution spiked with human serum albumin and immunoglobulin G are tested to determine the separation of DNA fragments from the main plasma protein fraction. By adding 1.5% (w/w) NaCl to a 17.7% (w/w) PEG 400/17.3% (w/w) phosphate ATPS, 88% DNA recovery was achieved in the salt-rich bottom phase while over 99% of the protein was removed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短 DNA 片段在聚合物/盐水两相体系中的分离行为。
液体活检作为一种微创肿瘤分析技术的发展,催生了从体液中提取高效生物标记物系统的需求。循环无细胞DNA(cfDNA)的分析前景尤其广阔,但血浆中的cfDNA数量少、碎片多,这给其分离带来了挑战。虽然水性两相系统(ATPS)在提取和纯化各种生物大分子方面的潜力已被成功证实,但有关这些研究结果是否适用于类似 cfDNA 的短片段的文献却很有限。本研究介绍了 160 bp DNA 片段在 pH 值为 7.4 的聚乙二醇(PEG)/盐 ATPS 中的分配行为。研究评估了 PEG 分子量、连接线长度、中性盐添加剂和相体积比对最大化 DNA 回收率的影响。对含有添加了人血清白蛋白和免疫球蛋白 G 的合成血浆溶液的精选 ATPS 进行了测试,以确定 DNA 片段与主要血浆蛋白部分的分离情况。通过在 17.7% (重量比)PEG 400/17.3% (重量比)磷酸盐 ATPS 中加入 1.5% (重量比)氯化钠,在富含盐分的底相中实现了 88% 的 DNA 回收率,同时去除了 99% 以上的蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
期刊最新文献
Construction of a Cell Factory for the Targeted and Efficient Production of Phytosterol to Boldenone in Mycobacterium neoaurum L-Asparaginase from Lachancea Thermotolerans: Effect of Lys99Ala on Enzyme Performance and in vitro Antileukemic Efficacy Multifunctional PAMAM Dendrimers Carrying SAHA, 5-FU, and a Therapeutic Gene for Targeted Co-Delivery Toward Colorectal Cancer Cells An Experimental and Modeling Approach to Study Tangential Flow Filtration Performance for mRNA Drug Substance Purification Engineering Regioselectivity of P450 BM3 Enables the Biosynthesis of Murideoxycholic Acid by 6β-Hydroxylation of Lithocholic Acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1