Weimin Li , Nan Chen , Jie Wang , Yin Luo , Huazhong Liu , Jihong Ding , Qun Jin
{"title":"Species-specific model based on sequence and structural information for ubiquitination sites prediction","authors":"Weimin Li , Nan Chen , Jie Wang , Yin Luo , Huazhong Liu , Jihong Ding , Qun Jin","doi":"10.1016/j.jmb.2024.168781","DOIUrl":null,"url":null,"abstract":"<div><p>Ubiquitination is a common post-translational modification of proteins in eukaryotic cells, and it is also a significant method of regulating protein biological function. Computational methods for predicting ubiquitination sites can serve as a cost-effective and time-saving alternative to experimental methods. Existing computational methods often build classifiers based on protein sequence information, physical and chemical properties of amino acids, evolutionary information, and structural parameters. However, structural information about most proteins cannot be found in existing databases directly. The features of proteins differ among species, and some species have small amounts of ubiquitinated proteins. Therefore, it is necessary to develop species-specific models that can be applied to datasets with small sample sizes. To solve these problems, we propose a species-specific model (SSUbi) based on a capsule network, which integrates proteins’ sequence and structural information. In this model, the feature extraction module is composed of two sub-modules that extract multi-dimensional features from sequence and structural information respectively. In the submodule, the convolution operation is used to extract encoding dimension features, and the channel attention mechanism is used to extract feature map dimension features. After integrating the multi-dimensional features from both types of information, the species-specific capsule network further converts the features into capsule vectors and classifies species-specific ubiquitination sites. The experimental results show that SSUbi can effectively improve the prediction performance of species with small sample sizes and outperform other models.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 22","pages":"Article 168781"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624004017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ubiquitination is a common post-translational modification of proteins in eukaryotic cells, and it is also a significant method of regulating protein biological function. Computational methods for predicting ubiquitination sites can serve as a cost-effective and time-saving alternative to experimental methods. Existing computational methods often build classifiers based on protein sequence information, physical and chemical properties of amino acids, evolutionary information, and structural parameters. However, structural information about most proteins cannot be found in existing databases directly. The features of proteins differ among species, and some species have small amounts of ubiquitinated proteins. Therefore, it is necessary to develop species-specific models that can be applied to datasets with small sample sizes. To solve these problems, we propose a species-specific model (SSUbi) based on a capsule network, which integrates proteins’ sequence and structural information. In this model, the feature extraction module is composed of two sub-modules that extract multi-dimensional features from sequence and structural information respectively. In the submodule, the convolution operation is used to extract encoding dimension features, and the channel attention mechanism is used to extract feature map dimension features. After integrating the multi-dimensional features from both types of information, the species-specific capsule network further converts the features into capsule vectors and classifies species-specific ubiquitination sites. The experimental results show that SSUbi can effectively improve the prediction performance of species with small sample sizes and outperform other models.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.