Physical effects of 3-D microenvironments on confined cell behaviors.

IF 5 2区 生物学 Q2 CELL BIOLOGY American journal of physiology. Cell physiology Pub Date : 2024-11-01 Epub Date: 2024-09-09 DOI:10.1152/ajpcell.00288.2024
Bao-Qiong Lan, Ya-Jun Wang, Sai-Xi Yu, Wei Liu, Yan-Jun Liu
{"title":"Physical effects of 3-D microenvironments on confined cell behaviors.","authors":"Bao-Qiong Lan, Ya-Jun Wang, Sai-Xi Yu, Wei Liu, Yan-Jun Liu","doi":"10.1152/ajpcell.00288.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cell migration is a fundamental and functional cellular process, influenced by a complex microenvironment consisting of different cells and extracellular matrix. Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instructs cell movement. Here, we explore various examples of three-dimensional microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1192-C1201"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00288.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell migration is a fundamental and functional cellular process, influenced by a complex microenvironment consisting of different cells and extracellular matrix. Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instructs cell movement. Here, we explore various examples of three-dimensional microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维微环境对封闭细胞行为的物理影响
细胞迁移是一个基本的功能性细胞过程,受到由不同细胞和细胞外基质(ECM)组成的复杂微环境的影响。最近的研究突出表明,除了来自微环境的生化线索外,物理线索也能在很大程度上改变细胞的行为。然而,由于微环境的复杂性,人们对迁移细胞与周围微环境之间的物理相互作用如何指导细胞运动知之甚少。在这里,我们探讨了体外三维微环境重建模型的各种实例,并描述了迁移细胞与邻近微环境之间的物理相互作用是如何控制细胞行为的。了解这种机械合作将为器官发育、再生和肿瘤转移提供重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
期刊最新文献
Animal models of haploinsufficiency revealed the isoform-specific role of GSK-3 in HFD-induced obesity and glucose intolerance. Hypoxia-induced TIMAP upregulation in endothelial cells and TIMAP-dependent tumor angiogenesis. Effects of age on human skeletal muscle: a systematic review and meta-analysis of myosin heavy chain isoform protein expression, fiber size, and distribution. Emerging roles of ketone bodies in cardiac fibrosis. Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1