Unit information Dirichlet process prior.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae091
Jiaqi Gu, Guosheng Yin
{"title":"Unit information Dirichlet process prior.","authors":"Jiaqi Gu, Guosheng Yin","doi":"10.1093/biomtc/ujae091","DOIUrl":null,"url":null,"abstract":"<p><p>Prior distributions, which represent one's belief in the distributions of unknown parameters before observing the data, impact Bayesian inference in a critical and fundamental way. With the ability to incorporate external information from expert opinions or historical datasets, the priors, if specified appropriately, can improve the statistical efficiency of Bayesian inference. In survival analysis, based on the concept of unit information (UI) under parametric models, we propose the unit information Dirichlet process (UIDP) as a new class of nonparametric priors for the underlying distribution of time-to-event data. By deriving the Fisher information in terms of the differential of the cumulative hazard function, the UIDP prior is formulated to match its prior UI with the weighted average of UI in historical datasets and thus can utilize both parametric and nonparametric information provided by historical datasets. With a Markov chain Monte Carlo algorithm, simulations and real data analysis demonstrate that the UIDP prior can adaptively borrow historical information and improve statistical efficiency in survival analysis.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prior distributions, which represent one's belief in the distributions of unknown parameters before observing the data, impact Bayesian inference in a critical and fundamental way. With the ability to incorporate external information from expert opinions or historical datasets, the priors, if specified appropriately, can improve the statistical efficiency of Bayesian inference. In survival analysis, based on the concept of unit information (UI) under parametric models, we propose the unit information Dirichlet process (UIDP) as a new class of nonparametric priors for the underlying distribution of time-to-event data. By deriving the Fisher information in terms of the differential of the cumulative hazard function, the UIDP prior is formulated to match its prior UI with the weighted average of UI in historical datasets and thus can utilize both parametric and nonparametric information provided by historical datasets. With a Markov chain Monte Carlo algorithm, simulations and real data analysis demonstrate that the UIDP prior can adaptively borrow historical information and improve statistical efficiency in survival analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单位信息 Dirichlet 过程先验
先验分布代表了人们在观察数据之前对未知参数分布的信念,它对贝叶斯推断有着重要而根本的影响。先验分布能够纳入专家意见或历史数据集等外部信息,如果指定得当,就能提高贝叶斯推断的统计效率。在生存分析中,基于参数模型下单位信息(UI)的概念,我们提出了单位信息 Dirichlet 过程(UIDP)作为时间到事件数据基础分布的一类新的非参数先验。通过推导累积危险函数差分的费雪信息,UIDP 先验的制定使其先验 UI 与历史数据集 UI 的加权平均值相匹配,从而可以利用历史数据集提供的参数和非参数信息。通过马尔科夫链蒙特卡罗算法,模拟和实际数据分析证明 UIDP 先验可以自适应地借用历史信息,提高生存分析的统计效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1