{"title":"Resting-state functional abnormalities in ischemic stroke: a meta-analysis of fMRI studies.","authors":"Zheng Zhang","doi":"10.1007/s11682-024-00919-1","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke is a leading neurological cause of severe disabilities and death in the world and has a major negative impact on patients' quality of life. However, the neural mechanism of spontaneous fluctuating neuronal activity remains unclear. This meta-analysis explored brain activity during resting state in patients with ischemic stroke including 22 studies of regional homogeneity, amplitude of low-frequency fluctuation, and fractional amplitude of low-frequency fluctuation (692 patients with ischemic stroke, 620 healthy controls, age range 35-80 years, 41% female, 175 foci). Results showed decreased regional activity in the bilateral caudate and thalamus and increased regional activity in the left superior occipital gyrus and left default mode network (precuneus/posterior cingulate cortex). Meta-analysis of the amplitude of low-frequency fluctuation studies showed that increased activity in the left inferior frontal gyrus was reduced across the progression from acute to chronic phases. These findings may indicate that disruption of the subcortical areas and default mode network could be one of the core functional abnormalities in ischemic stroke. Altered brain activity in the inferior frontal gyrus could be the imaging indicator of brain recovery/plasticity after stroke damage, which offers potential insight into developing prediction models and therapeutic strategies for ischemic stroke rehabilitation and recovery.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1569-1581"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Imaging and Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-024-00919-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke is a leading neurological cause of severe disabilities and death in the world and has a major negative impact on patients' quality of life. However, the neural mechanism of spontaneous fluctuating neuronal activity remains unclear. This meta-analysis explored brain activity during resting state in patients with ischemic stroke including 22 studies of regional homogeneity, amplitude of low-frequency fluctuation, and fractional amplitude of low-frequency fluctuation (692 patients with ischemic stroke, 620 healthy controls, age range 35-80 years, 41% female, 175 foci). Results showed decreased regional activity in the bilateral caudate and thalamus and increased regional activity in the left superior occipital gyrus and left default mode network (precuneus/posterior cingulate cortex). Meta-analysis of the amplitude of low-frequency fluctuation studies showed that increased activity in the left inferior frontal gyrus was reduced across the progression from acute to chronic phases. These findings may indicate that disruption of the subcortical areas and default mode network could be one of the core functional abnormalities in ischemic stroke. Altered brain activity in the inferior frontal gyrus could be the imaging indicator of brain recovery/plasticity after stroke damage, which offers potential insight into developing prediction models and therapeutic strategies for ischemic stroke rehabilitation and recovery.
期刊介绍:
Brain Imaging and Behavior is a bi-monthly, peer-reviewed journal, that publishes clinically relevant research using neuroimaging approaches to enhance our understanding of disorders of higher brain function. The journal is targeted at clinicians and researchers in fields concerned with human brain-behavior relationships, such as neuropsychology, psychiatry, neurology, neurosurgery, rehabilitation, and cognitive neuroscience.