Mei Liu, Sili Guo, Xiaohan Li, Yang Tian, Yanjie Yu, Lili Tang, Qimei Sun, Ting Zhang, Mingwei Fan, Lili Zhang, Yingjiang Xu, Jiajia An, Xiangqian Gao, Lei Han, Lei Zhang
{"title":"Semaglutide Alleviates Ovary Inflammation via the AMPK/SIRT1/NF‑κB Signaling Pathway in Polycystic Ovary Syndrome Mice.","authors":"Mei Liu, Sili Guo, Xiaohan Li, Yang Tian, Yanjie Yu, Lili Tang, Qimei Sun, Ting Zhang, Mingwei Fan, Lili Zhang, Yingjiang Xu, Jiajia An, Xiangqian Gao, Lei Han, Lei Zhang","doi":"10.2147/DDDT.S484531","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>GLP-1 receptor agonists (GLP-1 RA) have been proven to treat several metabolic diseases; however, the effects of GLP-1 RA on polycystic ovary syndrome (PCOS) remain unclear. Here, we aimed to investigate whether semaglutide, a novel GLP-1 RA, could alleviate ovarian inflammation in PCOS mice.</p><p><strong>Methods: </strong>Female C57BL/6J mice were subcutaneously injected with dehydroepiandrosterone for 21 days to establish the PCOS model. Then the mice were randomly divided into three groups: PCOS group (n = 6), S-0.42 group (semaglutide 0.42 mg/kg/w, n = 6), and S-0.84 group (semaglutide 0.84 mg/kg/w, n = 6). The remaining six mice were used as controls (NC). After 28 days of intervention, serum sex hormones and inflammatory cytokine levels were measured. Hematoxylin and eosin staining was used to observe the ovarian morphology. Immunohistochemical staining was used to detect the relative expression of CYP19A1, TNF-α, IL-6, IL-1β, and NF-κB in ovaries. CYP17A1 and StAR were detected using immunofluorescence staining. Finally, the relative expressions of AMPK, pAMPK, SIRT1, NF-κB, IκBα, pIκBα, TNF-α, IL-6, and IL-1β were measured using Western blotting.</p><p><strong>Results: </strong>First, after intervention with semaglutide, the weight of the mice decreased, insulin resistance improved, and the estrous cycle returned to normal. Serum testosterone and IL-1β levels decreased significantly, whereas estradiol and progestin levels increased significantly. Follicular cystic dilation significantly improved. The expression of TNF-α, IL-6, IL-1β, NF-κB, CYP17A1, and StAR in the ovary was significantly downregulated, whereas CYP19A1 expression was upregulated after the intervention. Finally, we confirmed that semaglutide alleviates ovarian tissue inflammation and improves PCOS through the AMPK/SIRT1/NF-κB signaling pathway.</p><p><strong>Conclusion: </strong>Semaglutide alleviates ovarian inflammation via the AMPK/SIRT1/NF‑κB signaling pathway in PCOS mice.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"3925-3938"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S484531","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: GLP-1 receptor agonists (GLP-1 RA) have been proven to treat several metabolic diseases; however, the effects of GLP-1 RA on polycystic ovary syndrome (PCOS) remain unclear. Here, we aimed to investigate whether semaglutide, a novel GLP-1 RA, could alleviate ovarian inflammation in PCOS mice.
Methods: Female C57BL/6J mice were subcutaneously injected with dehydroepiandrosterone for 21 days to establish the PCOS model. Then the mice were randomly divided into three groups: PCOS group (n = 6), S-0.42 group (semaglutide 0.42 mg/kg/w, n = 6), and S-0.84 group (semaglutide 0.84 mg/kg/w, n = 6). The remaining six mice were used as controls (NC). After 28 days of intervention, serum sex hormones and inflammatory cytokine levels were measured. Hematoxylin and eosin staining was used to observe the ovarian morphology. Immunohistochemical staining was used to detect the relative expression of CYP19A1, TNF-α, IL-6, IL-1β, and NF-κB in ovaries. CYP17A1 and StAR were detected using immunofluorescence staining. Finally, the relative expressions of AMPK, pAMPK, SIRT1, NF-κB, IκBα, pIκBα, TNF-α, IL-6, and IL-1β were measured using Western blotting.
Results: First, after intervention with semaglutide, the weight of the mice decreased, insulin resistance improved, and the estrous cycle returned to normal. Serum testosterone and IL-1β levels decreased significantly, whereas estradiol and progestin levels increased significantly. Follicular cystic dilation significantly improved. The expression of TNF-α, IL-6, IL-1β, NF-κB, CYP17A1, and StAR in the ovary was significantly downregulated, whereas CYP19A1 expression was upregulated after the intervention. Finally, we confirmed that semaglutide alleviates ovarian tissue inflammation and improves PCOS through the AMPK/SIRT1/NF-κB signaling pathway.
Conclusion: Semaglutide alleviates ovarian inflammation via the AMPK/SIRT1/NF‑κB signaling pathway in PCOS mice.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.