Impact of scattering phase function and polarization on the accuracy of diffuse and sub-diffuse spatial frequency domain imaging.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Biomedical Optics Pub Date : 2024-09-01 Epub Date: 2024-09-06 DOI:10.1117/1.JBO.29.9.095001
Alec B Walter, E Duco Jansen
{"title":"Impact of scattering phase function and polarization on the accuracy of diffuse and sub-diffuse spatial frequency domain imaging.","authors":"Alec B Walter, E Duco Jansen","doi":"10.1117/1.JBO.29.9.095001","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Although spatial frequency domain imaging (SFDI) has been well characterized under diffuse optical conditions, tissue measurements made outside the diffuse regime can provide new diagnostic information. Before such measurements can become clinically relevant, however, the behavior of sub-diffuse SFDI and its effect on the accuracy of derived tissue parameters must be assessed.</p><p><strong>Aim: </strong>We aim to characterize the impact that both the assumed scattering phase function (SPF) and the polarization state of the illumination light source have on the accuracy of SFDI-derived optical properties when operating under diffuse or sub-diffuse conditions, respectively.</p><p><strong>Approach: </strong>Through the use of a set of well-characterized optical phantoms, SFDI accuracy was assessed at four wavelengths (395, 545, 625, and 850 nm) and two different spatial frequencies (0.3 and <math><mrow><mn>1.0</mn> <mtext>  </mtext> <msup><mrow><mi>mm</mi></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> </math> ), which provided a broad range of diffuse and sub-diffuse conditions, using three different SPFs. To determine the effects of polarization, the SFDI accuracy was assessed using both unpolarized and cross-polarized illumination.</p><p><strong>Results: </strong>It was found that the assumed SPF has a direct and significant impact on the accuracy of the SFDI-derived optical properties, with the best choice of SPF being dictated by the polarization state. As unpolarized SFDI retains the sub-diffuse portion of the signal, optical properties were found to be more accurate when using the full SPF that includes forward and backscattering components. By contrast, cross-polarized SFDI yielded accurate optical properties when using a forward-scattering SPF, matching the behavior of cross-polarization to attenuate the immediate backscattering of sub-diffuse reflectance. Using the correct pairings of SPF and polarization enabled using a reflectance standard, instead of a more subjective phantom, as the reference measurement.</p><p><strong>Conclusions: </strong>These results provide the foundation for a more thorough understanding of SFDI and enable new applications of this technology in which sub-diffuse conditions dominate (e.g., <math> <mrow> <msub><mrow><mi>μ</mi></mrow> <mrow><mi>a</mi></mrow> </msub> <mo>≮</mo> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> ) or high spatial frequencies are required.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 9","pages":"095001"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.9.095001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Although spatial frequency domain imaging (SFDI) has been well characterized under diffuse optical conditions, tissue measurements made outside the diffuse regime can provide new diagnostic information. Before such measurements can become clinically relevant, however, the behavior of sub-diffuse SFDI and its effect on the accuracy of derived tissue parameters must be assessed.

Aim: We aim to characterize the impact that both the assumed scattering phase function (SPF) and the polarization state of the illumination light source have on the accuracy of SFDI-derived optical properties when operating under diffuse or sub-diffuse conditions, respectively.

Approach: Through the use of a set of well-characterized optical phantoms, SFDI accuracy was assessed at four wavelengths (395, 545, 625, and 850 nm) and two different spatial frequencies (0.3 and 1.0    mm - 1 ), which provided a broad range of diffuse and sub-diffuse conditions, using three different SPFs. To determine the effects of polarization, the SFDI accuracy was assessed using both unpolarized and cross-polarized illumination.

Results: It was found that the assumed SPF has a direct and significant impact on the accuracy of the SFDI-derived optical properties, with the best choice of SPF being dictated by the polarization state. As unpolarized SFDI retains the sub-diffuse portion of the signal, optical properties were found to be more accurate when using the full SPF that includes forward and backscattering components. By contrast, cross-polarized SFDI yielded accurate optical properties when using a forward-scattering SPF, matching the behavior of cross-polarization to attenuate the immediate backscattering of sub-diffuse reflectance. Using the correct pairings of SPF and polarization enabled using a reflectance standard, instead of a more subjective phantom, as the reference measurement.

Conclusions: These results provide the foundation for a more thorough understanding of SFDI and enable new applications of this technology in which sub-diffuse conditions dominate (e.g., μ a μ s ' ) or high spatial frequencies are required.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
散射相位函数和偏振对漫射和亚漫射空间频域成像精度的影响。
意义重大:虽然空间频率域成像(SFDI)在漫反射光学条件下具有很好的特性,但在漫反射系统之外进行的组织测量可以提供新的诊断信息。目的:我们旨在描述假设散射相位函数(SPF)和照明光源的偏振态分别在漫射或亚漫射条件下工作时对 SFDI 衍生光学特性准确性的影响:方法:通过使用一组特性良好的光学模型,在四种波长(395、545、625 和 850 nm)和两种不同的空间频率(0.3 和 1.0 mm - 1)条件下,使用三种不同的 SPF,评估了 SFDI 的准确性,从而提供了广泛的漫反射和亚漫反射条件。为了确定偏振的影响,使用非偏振和交叉偏振照明评估了 SFDI 的准确性:结果:研究发现,假定的 SPF 对 SFDI 衍生光学特性的准确性有直接而显著的影响,而 SPF 的最佳选择取决于偏振状态。由于非偏振 SFDI 保留了信号的次漫射部分,因此在使用包括正向和反向散射成分的完整 SPF 时,光学特性会更加准确。相比之下,交叉偏振 SFDI 在使用前向散射 SPF 时可获得准确的光学特性,这与交叉偏振衰减亚漫反射的直接后向散射的行为相匹配。利用 SPF 和偏振的正确配对,可以使用反射率标准而不是主观性更强的幻影作为参考测量:这些结果为更透彻地了解 SFDI 奠定了基础,并使这项技术在亚漫反射条件占主导地位(如 μ a ≮ μ s ')或需要高空间频率的新应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
期刊最新文献
Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. Digital instrument simulator to optimize the development of hyperspectral systems: application for intraoperative functional brain mapping. Personal identification using a cross-sectional hyperspectral image of a hand. Exploring near-infrared autofluorescence properties in parathyroid tissue: an analysis of fresh and paraffin-embedded thyroidectomy specimens. Impact of signal-to-noise ratio and contrast definition on the sensitivity assessment and benchmarking of fluorescence molecular imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1