Innovations in blood pressure measurement and reporting technology: International Society of Hypertension position paper endorsed by the World Hypertension League, European Society of Hypertension, Asian Pacific Society of Hypertension, and Latin American Society of Hypertension.
Kazuomi Kario, Bryan Williams, Naoko Tomitani, Richard J McManus, Aletta E Schutte, Alberto Avolio, Daichi Shimbo, Ji-Guang Wang, Nadia A Khan, Dean S Picone, Isabella Tan, Peter H Charlton, Michihiro Satoh, Keneilwe Nkgola Mmopi, Jose P Lopez-Lopez, Tomas L Bothe, Elisabetta Bianchini, Buna Bhandari, Jesús Lopez-Rivera, Fadi J Charchar, Maciej Tomaszewski, George Stergiou
{"title":"Innovations in blood pressure measurement and reporting technology: International Society of Hypertension position paper endorsed by the World Hypertension League, European Society of Hypertension, Asian Pacific Society of Hypertension, and Latin American Society of Hypertension.","authors":"Kazuomi Kario, Bryan Williams, Naoko Tomitani, Richard J McManus, Aletta E Schutte, Alberto Avolio, Daichi Shimbo, Ji-Guang Wang, Nadia A Khan, Dean S Picone, Isabella Tan, Peter H Charlton, Michihiro Satoh, Keneilwe Nkgola Mmopi, Jose P Lopez-Lopez, Tomas L Bothe, Elisabetta Bianchini, Buna Bhandari, Jesús Lopez-Rivera, Fadi J Charchar, Maciej Tomaszewski, George Stergiou","doi":"10.1097/HJH.0000000000003827","DOIUrl":null,"url":null,"abstract":"<p><p>Blood pressure (BP) is a key contributor to the lifetime risk of preclinical organ damage and cardiovascular disease. Traditional clinic-based BP readings are typically measured infrequently and under standardized/resting conditions and therefore do not capture BP values during normal everyday activity. Therefore, current hypertension guidelines emphasize the importance of incorporating out-of-office BP measurement into strategies for hypertension diagnosis and management. However, conventional home and ambulatory BP monitoring devices use the upper-arm cuff oscillometric method and only provide intermittent BP readings under static conditions or in a limited number of situations. New innovations include technologies for BP estimation based on processing of sensor signals supported by artificial intelligence tools, technologies for remote monitoring, reporting and storage of BP data, and technologies for BP data interpretation and patient interaction designed to improve hypertension management (\"digital therapeutics\"). The number and volume of data relating to new devices/technologies is increasing rapidly and will continue to grow. This International Society of Hypertension position paper describes the new devices/technologies, presents evidence relating to new BP measurement techniques and related indices, highlights standard for the validation of new devices/technologies, discusses the reliability and utility of novel BP monitoring devices, the association of these metrics with clinical outcomes, and the use of digital therapeutics. It also highlights the challenges and evidence gaps that need to be overcome before these new technologies can be considered as a user-friendly and accurate source of novel BP data to inform clinical hypertension management strategies.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HJH.0000000000003827","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Blood pressure (BP) is a key contributor to the lifetime risk of preclinical organ damage and cardiovascular disease. Traditional clinic-based BP readings are typically measured infrequently and under standardized/resting conditions and therefore do not capture BP values during normal everyday activity. Therefore, current hypertension guidelines emphasize the importance of incorporating out-of-office BP measurement into strategies for hypertension diagnosis and management. However, conventional home and ambulatory BP monitoring devices use the upper-arm cuff oscillometric method and only provide intermittent BP readings under static conditions or in a limited number of situations. New innovations include technologies for BP estimation based on processing of sensor signals supported by artificial intelligence tools, technologies for remote monitoring, reporting and storage of BP data, and technologies for BP data interpretation and patient interaction designed to improve hypertension management ("digital therapeutics"). The number and volume of data relating to new devices/technologies is increasing rapidly and will continue to grow. This International Society of Hypertension position paper describes the new devices/technologies, presents evidence relating to new BP measurement techniques and related indices, highlights standard for the validation of new devices/technologies, discusses the reliability and utility of novel BP monitoring devices, the association of these metrics with clinical outcomes, and the use of digital therapeutics. It also highlights the challenges and evidence gaps that need to be overcome before these new technologies can be considered as a user-friendly and accurate source of novel BP data to inform clinical hypertension management strategies.