Decisive role of electrostatic interaction in rheological evolution of graphene oxide under ultrasonic fragmentation†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Advances Pub Date : 2024-08-28 DOI:10.1039/D4NA00328D
Dongpyo Hong, Matlabjon Sattorov, Ok Sung Jeon, Se Hun Lee, Gun-Sik Park, Young Joon Yoo and Sang Yoon Park
{"title":"Decisive role of electrostatic interaction in rheological evolution of graphene oxide under ultrasonic fragmentation†","authors":"Dongpyo Hong, Matlabjon Sattorov, Ok Sung Jeon, Se Hun Lee, Gun-Sik Park, Young Joon Yoo and Sang Yoon Park","doi":"10.1039/D4NA00328D","DOIUrl":null,"url":null,"abstract":"<p >The aqueous dispersibility and processability of graphene oxide (GO) are pivotal for various applications, including the fluid assembly of macroscopic materials and nanofluidic systems. Despite the widespread utilization of ultrasonic treatment to achieve homogeneous dispersions, the rheological changes of GO during sonication have remained relatively unexplored, leading to conflicting research findings. In this study, we demonstrate that the viscoelastic evolution of GO can significantly differ under ultrasonic fragmentation depending on the balance between repulsion force and attraction force at the initial state before fragmentation. When electrostatic repulsion is in delicate equilibrium with attractive forces, gelation occurs under ultrasonic fragmentation, leading to increased viscosity under sonication. Conversely, when electrostatic repulsion predominates, viscosity decreases during sonication. This study reconciles conflicting observations on the rheological evolution of GO dispersions under ultrasonic fragmentation and provides valuable guidance and insights for the rheological engineering of GO colloidal systems.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 21","pages":" 5306-5312"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378021/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00328d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aqueous dispersibility and processability of graphene oxide (GO) are pivotal for various applications, including the fluid assembly of macroscopic materials and nanofluidic systems. Despite the widespread utilization of ultrasonic treatment to achieve homogeneous dispersions, the rheological changes of GO during sonication have remained relatively unexplored, leading to conflicting research findings. In this study, we demonstrate that the viscoelastic evolution of GO can significantly differ under ultrasonic fragmentation depending on the balance between repulsion force and attraction force at the initial state before fragmentation. When electrostatic repulsion is in delicate equilibrium with attractive forces, gelation occurs under ultrasonic fragmentation, leading to increased viscosity under sonication. Conversely, when electrostatic repulsion predominates, viscosity decreases during sonication. This study reconciles conflicting observations on the rheological evolution of GO dispersions under ultrasonic fragmentation and provides valuable guidance and insights for the rheological engineering of GO colloidal systems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静电作用在超声波破碎作用下氧化石墨烯流变演化中的决定性作用
氧化石墨烯(GO)的水分散性和可加工性对于各种应用(包括宏观材料的流体组装和纳米流体系统)至关重要。尽管人们广泛使用超声波处理来实现均匀分散,但对 GO 在超声波处理过程中的流变学变化仍相对缺乏探索,导致研究结果相互矛盾。在本研究中,我们证明了在超声破碎过程中,GO 的粘弹性演变会因破碎前初始状态下斥力和吸引力之间的平衡而产生显著差异。当静电斥力与吸引力处于微妙的平衡状态时,在超声破碎作用下会发生凝胶化,从而导致超声作用下的粘度增加。相反,当静电排斥力占主导地位时,超声处理时粘度会降低。这项研究调和了在超声破碎作用下有关 GO 分散体流变演变的相互矛盾的观察结果,为 GO 胶体系统的流变工程提供了宝贵的指导和启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
期刊最新文献
Advances in biomaterials for sports injury prevention and rehabilitation: current status and future perspectives. Sequential treatment of cyanide and phenolic mixtures using CMC-PVP-nZVI/Pd and Rhodococcus pyridinivorans strain PDB9T N1. Targeted nanocarriers integrating photodynamic and photothermal therapy: a paradigm shift in rheumatoid arthritis treatment. Bimetallic Ti3C2T x with three synergistic catalytic pathways and enhanced dual enzyme activities for a visual sensing platform. Morphology-driven ionic pathway engineering in CuCo2O4/carbon nanotubes for high diffusion hybrid supercapacitors across diverse electrolyte conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1