Altering glycopeptide antibiotic biosynthesis through mutasynthesis allows incorporation of fluorinated phenylglycine residues†

IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RSC Chemical Biology Pub Date : 2024-08-12 DOI:10.1039/D4CB00140K
Irina Voitsekhovskaia, Y. T. Candace Ho, Christoph Klatt, Anna Müller, Daniel L. Machell, Yi Jiun Tan, Maxine Triesman, Mara Bingel, Ralf B. Schittenhelm, Julien Tailhades, Andreas Kulik, Martin E. Maier, Gottfried Otting, Wolfgang Wohlleben, Tanja Schneider, Max Cryle and Evi Stegmann
{"title":"Altering glycopeptide antibiotic biosynthesis through mutasynthesis allows incorporation of fluorinated phenylglycine residues†","authors":"Irina Voitsekhovskaia, Y. T. Candace Ho, Christoph Klatt, Anna Müller, Daniel L. Machell, Yi Jiun Tan, Maxine Triesman, Mara Bingel, Ralf B. Schittenhelm, Julien Tailhades, Andreas Kulik, Martin E. Maier, Gottfried Otting, Wolfgang Wohlleben, Tanja Schneider, Max Cryle and Evi Stegmann","doi":"10.1039/D4CB00140K","DOIUrl":null,"url":null,"abstract":"<p >Glycopeptide antibiotics (GPAs) are peptide natural products used as last resort treatments for antibiotic resistant bacterial infections. They are produced by the sequential activities of a linear nonribosomal peptide synthetase (NRPS), which assembles the heptapeptide core of GPAs, and cytochrome P450 (Oxy) enzymes, which perform a cascade of cyclisation reactions. The GPAs contain proteinogenic and nonproteinogenic amino acids, including phenylglycine residues such as 4-hydroxyphenylglycine (Hpg). The ability to incorporate non-proteinogenic amino acids in such peptides is a distinctive feature of the modular architecture of NRPSs, with each module selecting and incorporating a desired amino acid. Here, we have exploited this ability to produce and characterise GPA derivatives containing fluorinated phenylglycine (F-Phg) residues through a combination of mutasynthesis, biochemical, structural and bioactivity assays. Our data indicate that the incorporation of F-Phg residues is limited by poor acceptance by the NRPS machinery, and that the phenol moiety normally present on Hpg residues is essential to ensure both acceptance by the NRPS and the sequential cyclisation activity of Oxy enzymes. The principles learnt here may prove useful for the future production of GPA derivatives with more favourable properties through mixed feeding mutasynthesis approaches.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cb/d4cb00140k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glycopeptide antibiotics (GPAs) are peptide natural products used as last resort treatments for antibiotic resistant bacterial infections. They are produced by the sequential activities of a linear nonribosomal peptide synthetase (NRPS), which assembles the heptapeptide core of GPAs, and cytochrome P450 (Oxy) enzymes, which perform a cascade of cyclisation reactions. The GPAs contain proteinogenic and nonproteinogenic amino acids, including phenylglycine residues such as 4-hydroxyphenylglycine (Hpg). The ability to incorporate non-proteinogenic amino acids in such peptides is a distinctive feature of the modular architecture of NRPSs, with each module selecting and incorporating a desired amino acid. Here, we have exploited this ability to produce and characterise GPA derivatives containing fluorinated phenylglycine (F-Phg) residues through a combination of mutasynthesis, biochemical, structural and bioactivity assays. Our data indicate that the incorporation of F-Phg residues is limited by poor acceptance by the NRPS machinery, and that the phenol moiety normally present on Hpg residues is essential to ensure both acceptance by the NRPS and the sequential cyclisation activity of Oxy enzymes. The principles learnt here may prove useful for the future production of GPA derivatives with more favourable properties through mixed feeding mutasynthesis approaches.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过突变合成改变糖肽抗生素的生物合成,可以加入含氟苯甘氨酸残基。
糖肽类抗生素(GPAs)是一种肽类天然产物,是治疗抗生素耐药细菌感染的最后手段。它们是由线性非核糖体肽合成酶(NRPS)和细胞色素 P450(Oxy)酶的连续活动产生的,前者负责组装 GPAs 的七肽核心,后者则负责执行一连串的环化反应。GPAs 含有致蛋白氨基酸和非致蛋白氨基酸,包括苯甘氨酸残基,如 4-羟基苯甘氨酸(Hpg)。在这种肽中加入非蛋白源氨基酸的能力是 NRPSs 模块化结构的一个显著特点,每个模块都能选择并加入所需的氨基酸。在这里,我们利用这种能力,通过结合突变合成、生化、结构和生物活性测定,生产出了含有氟化苯甘氨酸(F-Phg)残基的 GPA 衍生物,并对其进行了表征。我们的数据表明,F-Phg 残基的结合受到 NRPS 机制接受能力差的限制,而通常存在于 Hpg 残基上的苯酚分子对于确保 NRPS 的接受能力和 Oxy 酶的顺序环化活性至关重要。这里所学到的原理可能有助于今后通过混合进料突变合成法生产出具有更有利特性的 GPA 衍生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
期刊最新文献
Back cover Sequence-function space of radical SAM cyclophane synthases reveal conserved active site residues that influence substrate specificity. Induced degradation of SNAP-fusion proteins. Fluorescent probes for investigating the internalisation and action of bioorthogonal ruthenium catalysts within Gram-positive bacteria. Discovery and design of molecular glue enhancers of CDK12-DDB1 interactions for targeted degradation of cyclin K.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1