Metabolite release by nitrifiers facilitates metabolic interactions in the ocean.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY ISME Journal Pub Date : 2024-09-08 DOI:10.1093/ismejo/wrae172
Barbara Bayer, Shuting Liu, Katherine Louie, Trent R Northen, Michael Wagner, Holger Daims, Craig A Carlson, Alyson E Santoro
{"title":"Metabolite release by nitrifiers facilitates metabolic interactions in the ocean.","authors":"Barbara Bayer, Shuting Liu, Katherine Louie, Trent R Northen, Michael Wagner, Holger Daims, Craig A Carlson, Alyson E Santoro","doi":"10.1093/ismejo/wrae172","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211. Nitrifier endometabolome composition was not a good predictor of exometabolite availability, indicating that metabolites were predominately released by mechanisms other than cell death/lysis. Although both nitrifiers released labile organic compounds, N. adriaticus preferentially released amino acids, particularly glycine, suggesting that its cell membranes might be more permeable to small, hydrophobic amino acids. We further initiated co-culture systems between each nitrifier and a heterotrophic alphaproteobacterium, and compared exometabolite and transcript patterns of nitrifiers grown axenically to those in co-culture. In particular, B vitamins exhibited dynamic production and consumption patterns in nitrifier-heterotroph co-cultures. We observed an increased production of vitamin B2 and the vitamin B12 lower ligand dimethylbenzimidazole by N. adriaticus and N. gracilis, respectively. In contrast, the heterotroph likely produced vitamin B5 in co-culture with both nitrifiers and consumed the vitamin B7 precursor dethiobiotin when grown with N. gracilis. Our results indicate that B vitamins and their precursors could play a particularly important role in governing specific metabolic interactions between nitrifiers and heterotrophic microbes in the ocean.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae172","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211. Nitrifier endometabolome composition was not a good predictor of exometabolite availability, indicating that metabolites were predominately released by mechanisms other than cell death/lysis. Although both nitrifiers released labile organic compounds, N. adriaticus preferentially released amino acids, particularly glycine, suggesting that its cell membranes might be more permeable to small, hydrophobic amino acids. We further initiated co-culture systems between each nitrifier and a heterotrophic alphaproteobacterium, and compared exometabolite and transcript patterns of nitrifiers grown axenically to those in co-culture. In particular, B vitamins exhibited dynamic production and consumption patterns in nitrifier-heterotroph co-cultures. We observed an increased production of vitamin B2 and the vitamin B12 lower ligand dimethylbenzimidazole by N. adriaticus and N. gracilis, respectively. In contrast, the heterotroph likely produced vitamin B5 in co-culture with both nitrifiers and consumed the vitamin B7 precursor dethiobiotin when grown with N. gracilis. Our results indicate that B vitamins and their precursors could play a particularly important role in governing specific metabolic interactions between nitrifiers and heterotrophic microbes in the ocean.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硝化细菌释放的代谢物促进了海洋中的新陈代谢相互作用。
微生物化能自养生物与异养生物之间的相互作用可能在深海碳循环中起着关键作用,这与表层水域浮游植物与异养生物之间的关系相似。硝化细菌是全球海洋中最丰富的化学自养生物,但人们对硝化细菌代谢物的产生、释放以及向异养微生物群落的转移知之甚少。为了弄清哪些有机化合物由硝化细菌释放并可能为异养微生物所利用,我们对氨氧化古菌 Nitrosopumilus adriaticus CCS1 和亚硝酸盐氧化细菌 Nitrospina gracilis Nb-211 的外代谢组和内代谢组进行了表征。硝化细菌内代谢组的组成不能很好地预测外代谢物的可用性,这表明代谢物主要是通过细胞死亡/分解以外的机制释放出来的。虽然两种硝化细菌都释放易变有机化合物,但N. adriaticus更倾向于释放氨基酸,尤其是甘氨酸,这表明其细胞膜可能对疏水性小氨基酸的渗透性更强。我们进一步启动了每种硝化细菌与一种异养型α-蛋白细菌的共培养系统,并比较了轴向生长的硝化细菌与共培养的硝化细菌的外代谢物和转录本模式。特别是,B 族维生素在硝化细菌-异养菌共培养过程中表现出动态的生产和消耗模式。我们观察到,N. adriaticus 和 N. gracilis 分别增加了维生素 B2 和维生素 B12 低配体二甲基苯并咪唑的产量。与此相反,异养生物在与两种硝化细菌共培养时可能会产生维生素 B5,而在与蟛蜞菊共同生长时则会消耗维生素 B7 的前体去硫生物素。我们的研究结果表明,B 族维生素及其前体可能在调节海洋中硝化细菌与异养微生物之间的特定代谢相互作用方面发挥着特别重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
期刊最新文献
Metabolite release by nitrifiers facilitates metabolic interactions in the ocean. Ammonia leakage can underpin nitrogen-sharing among soil microorganisms. Gut microbiota dysbiosis deteriorates immunoregulatory effects of tryptophan via colonic indole and LBP/HTR2B-mediated macrophage function. Adaptation strategies of giant viruses to low-temperature marine ecosystems. Bacterial chemolithoautotrophy in ultramafic plumes along the mid-Atlantic ridge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1