Advanced magnetic resonance imaging for glioblastoma: Oncology-radiology integration.

Surgical neurology international Pub Date : 2024-08-30 eCollection Date: 2024-01-01 DOI:10.25259/SNI_498_2024
Abdulsalam Mohammed Aleid, Abdulrahim Saleh Alrasheed, Saud Nayef Aldanyowi, Sami Fadhel Almalki
{"title":"Advanced magnetic resonance imaging for glioblastoma: Oncology-radiology integration.","authors":"Abdulsalam Mohammed Aleid, Abdulrahim Saleh Alrasheed, Saud Nayef Aldanyowi, Sami Fadhel Almalki","doi":"10.25259/SNI_498_2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aggressive brain tumors like glioblastoma multiforme (GBM) pose a poor prognosis. While magnetic resonance imaging (MRI) is crucial for GBM management, distinguishing it from other lesions using conventional methods can be difficult. This study explores advanced MRI techniques better to understand GBM properties and their link to patient outcomes.</p><p><strong>Methods: </strong>We studied MRI scans of 157 GBM surgery patients from January 2020 to March 2024 to extract radiomic features and analyze the impact of fluid-attenuated inversion recovery (FLAIR) resection on survival using statistical methods, proportional hazards regression, and Kaplan-Meier survival analysis.</p><p><strong>Results: </strong>Predictive models achieved high accuracy (area under the curve of 0.902) for glioma-grade prediction. FLAIR abnormality resection significantly improved survival, while diffusion-weighted image best-depicted tumor infiltration. Glioblastoma infiltration was best seen with advanced MRI compared to metastasis. Glioblastomas showed distinct features, including irregular shape, margins, and enhancement compared to metastases, which were oval or round, with clear edges and even contrast, and extensive peritumoral changes.</p><p><strong>Conclusion: </strong>Advanced radiomic and machine learning analysis of MRI can provide noninvasive glioma grading and characterization of tumor properties with clinical relevance. Combining advanced neuroimaging with histopathology may better integrate oncology and radiology for optimized glioblastoma management. However, further studies are needed to validate these findings with larger datasets and assess additional MRI sequences and radiomic features.</p>","PeriodicalId":94217,"journal":{"name":"Surgical neurology international","volume":"15 ","pages":"309"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical neurology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25259/SNI_498_2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Aggressive brain tumors like glioblastoma multiforme (GBM) pose a poor prognosis. While magnetic resonance imaging (MRI) is crucial for GBM management, distinguishing it from other lesions using conventional methods can be difficult. This study explores advanced MRI techniques better to understand GBM properties and their link to patient outcomes.

Methods: We studied MRI scans of 157 GBM surgery patients from January 2020 to March 2024 to extract radiomic features and analyze the impact of fluid-attenuated inversion recovery (FLAIR) resection on survival using statistical methods, proportional hazards regression, and Kaplan-Meier survival analysis.

Results: Predictive models achieved high accuracy (area under the curve of 0.902) for glioma-grade prediction. FLAIR abnormality resection significantly improved survival, while diffusion-weighted image best-depicted tumor infiltration. Glioblastoma infiltration was best seen with advanced MRI compared to metastasis. Glioblastomas showed distinct features, including irregular shape, margins, and enhancement compared to metastases, which were oval or round, with clear edges and even contrast, and extensive peritumoral changes.

Conclusion: Advanced radiomic and machine learning analysis of MRI can provide noninvasive glioma grading and characterization of tumor properties with clinical relevance. Combining advanced neuroimaging with histopathology may better integrate oncology and radiology for optimized glioblastoma management. However, further studies are needed to validate these findings with larger datasets and assess additional MRI sequences and radiomic features.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胶质母细胞瘤的高级磁共振成像:肿瘤学与放射学的整合。
背景:多形性胶质母细胞瘤(GBM)等侵袭性脑肿瘤预后较差。虽然磁共振成像(MRI)对 GBM 的治疗至关重要,但使用传统方法很难将其与其他病变区分开来。本研究探索先进的磁共振成像技术,以更好地了解 GBM 的特性及其与患者预后的关系:我们研究了 2020 年 1 月至 2024 年 3 月期间 157 例 GBM 手术患者的 MRI 扫描图像,以提取放射学特征,并使用统计方法、比例危险回归和 Kaplan-Meier 生存分析,分析流体增强反转恢复(FLAIR)切除对生存的影响:预测模型对胶质瘤分级预测的准确率很高(曲线下面积为 0.902)。FLAIR异常切除能显著提高生存率,而弥散加权图像能最好地显示肿瘤浸润情况。与转移瘤相比,胶质母细胞瘤的浸润在晚期磁共振成像中显示得最好。与转移瘤相比,胶质母细胞瘤显示出明显的特征,包括不规则的形状、边缘和强化,而转移瘤呈椭圆形或圆形,边缘清晰,对比度均匀,瘤周变化广泛:结论:先进的磁共振成像放射学和机器学习分析可提供无创胶质瘤分级和具有临床意义的肿瘤特性特征。将先进的神经影像学与组织病理学相结合,可以更好地整合肿瘤学和放射学,优化胶质母细胞瘤的治疗。不过,还需要进一步的研究,用更大的数据集来验证这些发现,并评估更多的磁共振成像序列和放射学特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drainage of middle cranial fossa epidural abscess through mastoidectomy: Our experience and review of the literature. Giant intracranial tuberculomas in children: An unexpected diagnosis and difficult management - About two cases and review of the literature. Neurosurgical skills conference for medical students: A before and after study. Transarterial embolization for anterior cranial fossa dural arteriovenous fistula based on multi-modal three-dimensional imaging. Monitoring of visual-evoked potentials during fat packing in endoscopic resection of a giant pituitary adenoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1