{"title":"Nonexistence of multi-dimensional solitary waves for the Euler–Poisson system","authors":"Junsik Bae , Daisuke Kawagoe","doi":"10.1016/j.physd.2024.134347","DOIUrl":null,"url":null,"abstract":"<div><p>We study the nonexistence of multi-dimensional solitary waves for the Euler–Poisson system governing ion dynamics. It is well-known that the one-dimensional Euler–Poisson system has solitary waves that travel faster than the ion-sound speed. In contrast, we show that the two-dimensional and three-dimensional models do not admit nontrivial irrotational spatially localized traveling waves in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> space for any traveling velocity and for general pressure laws. Our results provide theoretical evidence for the stability of line solitary waves in multi-dimensional Euler–Poisson flows. We derive some Pohozaev type identities associated with the energy and density integrals. This approach is extended to prove the nonexistence of irrotational multi-dimensional solitary waves for the two-species Euler–Poisson system for ions and electrons.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134347"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002987","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the nonexistence of multi-dimensional solitary waves for the Euler–Poisson system governing ion dynamics. It is well-known that the one-dimensional Euler–Poisson system has solitary waves that travel faster than the ion-sound speed. In contrast, we show that the two-dimensional and three-dimensional models do not admit nontrivial irrotational spatially localized traveling waves in the space for any traveling velocity and for general pressure laws. Our results provide theoretical evidence for the stability of line solitary waves in multi-dimensional Euler–Poisson flows. We derive some Pohozaev type identities associated with the energy and density integrals. This approach is extended to prove the nonexistence of irrotational multi-dimensional solitary waves for the two-species Euler–Poisson system for ions and electrons.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.