Strengthening effect of the CFRP method on fire-damaged segments

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2024-09-09 DOI:10.1016/j.tust.2024.105871
{"title":"Strengthening effect of the CFRP method on fire-damaged segments","authors":"","doi":"10.1016/j.tust.2024.105871","DOIUrl":null,"url":null,"abstract":"<div><p>To reveal the strengthening effect of the CFRP method on the fire-damaged segment. In this study, the fire-damaged segment was strengthened with the CFRP-PCM method and CFRP-sheet method, respectively. The crack development, deformation characteristics, failure mode, load-bearing behaviour and internal force evolution of the segment specimens were analysed. The results indicated that the CFRP-PCM method can improve the crack development of the segment, while the CFRP-sheet method can only prevent the crack initiation of the segment before tearing between the CFRP sheet and the segment. The fire-damaged segment strengthened by the CFRP-PCM method exhibited gradual deformation and failure characteristics, whereas the fire-damaged segment strengthened by the CFRP-sheet method exhibited sudden failure with no discernible damage characteristics. The CFRP-sheet method had a higher initial strengthening effect on the fire-damaged segment than the CFRP-PCM method before tearing between the CFRP sheet and the segment, while the strength utilisation rate of the CFRP grid was higher than that of the CFRP sheet. The CFRP method of strengthening the fire-damaged segment can improve the tensile strength of the tension zone, increase the sectional stiffness, and restore the load-bearing capacity; however, this comes at the expense of the deformation capacity. The study provides a reference value for the strengthening design of fire-damaged linings in shield tunnels.</p></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S088677982400289X/pdfft?md5=a7d499e3f5a8959880b28a06fa714a5f&pid=1-s2.0-S088677982400289X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088677982400289X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To reveal the strengthening effect of the CFRP method on the fire-damaged segment. In this study, the fire-damaged segment was strengthened with the CFRP-PCM method and CFRP-sheet method, respectively. The crack development, deformation characteristics, failure mode, load-bearing behaviour and internal force evolution of the segment specimens were analysed. The results indicated that the CFRP-PCM method can improve the crack development of the segment, while the CFRP-sheet method can only prevent the crack initiation of the segment before tearing between the CFRP sheet and the segment. The fire-damaged segment strengthened by the CFRP-PCM method exhibited gradual deformation and failure characteristics, whereas the fire-damaged segment strengthened by the CFRP-sheet method exhibited sudden failure with no discernible damage characteristics. The CFRP-sheet method had a higher initial strengthening effect on the fire-damaged segment than the CFRP-PCM method before tearing between the CFRP sheet and the segment, while the strength utilisation rate of the CFRP grid was higher than that of the CFRP sheet. The CFRP method of strengthening the fire-damaged segment can improve the tensile strength of the tension zone, increase the sectional stiffness, and restore the load-bearing capacity; however, this comes at the expense of the deformation capacity. The study provides a reference value for the strengthening design of fire-damaged linings in shield tunnels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFRP 法对火灾受损路段的加固效果
揭示 CFRP 方法对火灾受损段的加固效果。本研究分别采用 CFRP-PCM 法和 CFRP 片材法对火灾损坏段进行了加固。分析了裂缝发展、变形特征、失效模式、承载行为和内力演变。结果表明,CFRP-PCM 方法可以改善节段的裂纹发展,而 CFRP 片材方法只能在 CFRP 片材与节段之间撕裂之前阻止节段裂纹的产生。采用 CFRP-PCM 方法加固的火灾损坏区段表现出渐进变形和破坏特征,而采用 CFRP 片材方法加固的火灾损坏区段则表现出突然破坏,没有明显的损坏特征。与 CFRP-PCM 方法相比,CFRP-片材方法在 CFRP 片材与火灾受损段之间发生撕裂之前,对火灾受损段的初始加固效果更高,同时 CFRP 网格的强度利用率高于 CFRP 片材。CFRP 加固火灾受损区段的方法可以提高受拉区的抗拉强度,增加截面刚度,恢复承载能力;但这是以牺牲变形能力为代价的。该研究为盾构隧道火损衬砌的加固设计提供了参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Experimental study on sealing effect of cement–sodium silicate slurry in rock fracture with flowing seawater Theory and field tests of innovative cut blasting method for rock roadway excavation Asymmetric deformation and failure behavior of roadway subjected to different principal stress based on biaxial tests Scalar- and vector-valued seismic fragility assessment of segmental shield tunnel lining in liquefiable soil deposits Experimental and numerical study on the waterproof performances of the sealing gaskets under coupled compression-shear stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1