Search and recovery network for camouflaged object detection

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2024-09-01 DOI:10.1016/j.imavis.2024.105247
Guangrui Liu, Wei Wu
{"title":"Search and recovery network for camouflaged object detection","authors":"Guangrui Liu,&nbsp;Wei Wu","doi":"10.1016/j.imavis.2024.105247","DOIUrl":null,"url":null,"abstract":"<div><p>Camouflaged object detection aims to accurately identify objects blending into the background. However, existing methods often struggle, especially with small object or multiple objects, due to their reliance on singular strategies. To address this, we introduce a novel Search and Recovery Network (SRNet) using a bionic approach and auxiliary features. SRNet comprises three key modules: the Region Search Module (RSM), Boundary Recovery Module (BRM), and Camouflaged Object Predictor (COP). The RSM mimics predator behavior to locate potential object regions, enhancing object location detection. The BRM refines texture features and recovers object boundaries. The COP fuse multilevel features to predict final segmentation maps. Experimental results on three benchmark datasets show SRNet's superiority over SOTA models, particularly with small and multiple objects. Notably, SRNet achieves performance improvements without significantly increasing model parameters. Moreover, the method exhibits promising performance in downstream tasks such as defect detection, polyp segmentation and military camouflage detection.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"151 ","pages":"Article 105247"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003524","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Camouflaged object detection aims to accurately identify objects blending into the background. However, existing methods often struggle, especially with small object or multiple objects, due to their reliance on singular strategies. To address this, we introduce a novel Search and Recovery Network (SRNet) using a bionic approach and auxiliary features. SRNet comprises three key modules: the Region Search Module (RSM), Boundary Recovery Module (BRM), and Camouflaged Object Predictor (COP). The RSM mimics predator behavior to locate potential object regions, enhancing object location detection. The BRM refines texture features and recovers object boundaries. The COP fuse multilevel features to predict final segmentation maps. Experimental results on three benchmark datasets show SRNet's superiority over SOTA models, particularly with small and multiple objects. Notably, SRNet achieves performance improvements without significantly increasing model parameters. Moreover, the method exhibits promising performance in downstream tasks such as defect detection, polyp segmentation and military camouflage detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于伪装物体探测的搜索和恢复网络
伪装物体检测旨在准确识别融入背景的物体。然而,由于依赖于单一策略,现有的方法往往难以奏效,尤其是在检测小物体或多个物体时。为了解决这个问题,我们采用仿生方法和辅助特征,推出了一种新型搜索和恢复网络(SRNet)。SRNet 由三个关键模块组成:区域搜索模块 (RSM)、边界恢复模块 (BRM) 和伪装物体预测器 (COP)。RSM 模拟捕食者的行为来定位潜在的物体区域,从而增强物体位置检测。BRM 可完善纹理特征并恢复物体边界。COP 融合多层次特征,预测最终的分割图。在三个基准数据集上的实验结果表明,SRNet 优于 SOTA 模型,尤其是在检测小物体和多物体时。值得注意的是,SRNet 在不显著增加模型参数的情况下提高了性能。此外,该方法在缺陷检测、息肉分割和军事伪装检测等下游任务中表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
CF-SOLT: Real-time and accurate traffic accident detection using correlation filter-based tracking TransWild: Enhancing 3D interacting hands recovery in the wild with IoU-guided Transformer Machine learning applications in breast cancer prediction using mammography Channel and Spatial Enhancement Network for human parsing Non-negative subspace feature representation for few-shot learning in medical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1