Van-Truong Hoang , Khanh-Tung Tran , Xuan-Son Vu , Duy-Khuong Nguyen , Monowar Bhuyan , Hoang D. Nguyen
{"title":"Wave2Graph: Integrating spectral features and correlations for graph-based learning in sound waves","authors":"Van-Truong Hoang , Khanh-Tung Tran , Xuan-Son Vu , Duy-Khuong Nguyen , Monowar Bhuyan , Hoang D. Nguyen","doi":"10.1016/j.aiopen.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates a novel graph-based representation of sound waves inspired by the physical phenomenon of correlated vibrations. We propose a Wave2Graph framework for integrating multiple acoustic representations, including the spectrum of frequencies and correlations, into various neural computing architectures to achieve new state-of-the-art performances in sound classification. The capability and reliability of our end-to-end framework are evidently demonstrated in voice pathology for low-cost and non-invasive mass-screening of medical conditions, including respiratory illnesses and Alzheimer’s Dementia. We conduct extensive experiments on multiple public benchmark datasets (ICBHI and ADReSSo) and our real-world dataset (IJSound: Respiratory disease detection using coughs and breaths). Wave2Graph framework consistently outperforms previous state-of-the-art methods with a large magnitude, up to 7.65% improvement, promising the usefulness of graph-based representation in signal processing and machine learning.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"5 ","pages":"Pages 115-125"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651024000147/pdfft?md5=39354e1c8fc8f37b3f91eb3d652b379f&pid=1-s2.0-S2666651024000147-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651024000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates a novel graph-based representation of sound waves inspired by the physical phenomenon of correlated vibrations. We propose a Wave2Graph framework for integrating multiple acoustic representations, including the spectrum of frequencies and correlations, into various neural computing architectures to achieve new state-of-the-art performances in sound classification. The capability and reliability of our end-to-end framework are evidently demonstrated in voice pathology for low-cost and non-invasive mass-screening of medical conditions, including respiratory illnesses and Alzheimer’s Dementia. We conduct extensive experiments on multiple public benchmark datasets (ICBHI and ADReSSo) and our real-world dataset (IJSound: Respiratory disease detection using coughs and breaths). Wave2Graph framework consistently outperforms previous state-of-the-art methods with a large magnitude, up to 7.65% improvement, promising the usefulness of graph-based representation in signal processing and machine learning.