{"title":"Predicting fatigue failure in five-axis machined ball-end milled components through FKM local stress approach","authors":"Zayeem Fazili, Simon Barrans, Karl Walton","doi":"10.1111/ffe.14403","DOIUrl":null,"url":null,"abstract":"<p>Components created with five-axis machining show a multi-scale surface character due to cusps created on the surface and feed and tool marks within the cusps. Therefore, it becomes difficult to incorporate the effects of surface character on fatigue life for such components. In this work, an Forschungskuratorium Maschinenbau (FKM) guideline is adapted to develop a fatigue prediction model which considers cusps as notches and marks within the cusps as surface roughness (characterized by parameter R10z). The assessment uses stresses obtained from an finite element analysis model to predict the fatigue life of components whilst considering stress concentration, stress gradient, mean stress, and surface roughness effects. When cusps are regarded as surface roughness within the conventional FKM approach, fatigue life is considerably underestimated. In comparison, fatigue life predictions that take into consideration the roughness within cusps and treat cusps as stress-raising notches are closer to experimental life.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 10","pages":"3773-3790"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14403","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14403","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Components created with five-axis machining show a multi-scale surface character due to cusps created on the surface and feed and tool marks within the cusps. Therefore, it becomes difficult to incorporate the effects of surface character on fatigue life for such components. In this work, an Forschungskuratorium Maschinenbau (FKM) guideline is adapted to develop a fatigue prediction model which considers cusps as notches and marks within the cusps as surface roughness (characterized by parameter R10z). The assessment uses stresses obtained from an finite element analysis model to predict the fatigue life of components whilst considering stress concentration, stress gradient, mean stress, and surface roughness effects. When cusps are regarded as surface roughness within the conventional FKM approach, fatigue life is considerably underestimated. In comparison, fatigue life predictions that take into consideration the roughness within cusps and treat cusps as stress-raising notches are closer to experimental life.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.