Coordination engineering of single-atom ruthenium in 2D MoS2 for enhanced hydrogen evolution†

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2024-09-09 DOI:10.1039/D4SC04905E
Dong Guo, Xiong-Xiong Xue, Menggai Jiao, Jinhui Liu, Tian Wu, Xiandi Ma, Die Lu, Rui Zhang, Shaojun Zhang, Gonglei Shao and Zhen Zhou
{"title":"Coordination engineering of single-atom ruthenium in 2D MoS2 for enhanced hydrogen evolution†","authors":"Dong Guo, Xiong-Xiong Xue, Menggai Jiao, Jinhui Liu, Tian Wu, Xiandi Ma, Die Lu, Rui Zhang, Shaojun Zhang, Gonglei Shao and Zhen Zhou","doi":"10.1039/D4SC04905E","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the enhancement of catalytic activity in single-atom catalysts (SACs) through coordination engineering. By introducing non-metallic atoms (X = N, O, or F) into the basal plane of MoS<small><sub>2</sub></small><em>via</em> defect engineering and subsequently anchoring hetero-metallic Ru atoms, we created 10 types of non-metal-coordinated Ru SACs (Ru–X–MoS<small><sub>2</sub></small>). Computations indicate that non-metal atom X significantly modifies the electronic structure of Ru, optimizing the hydrogen evolution reaction (HER). Across acidic, neutral, and alkaline electrolytes, Ru–X–MoS<small><sub>2</sub></small> catalysts exhibit significantly improved HER performance compared with Ru–MoS<small><sub>2</sub></small>, even surpassing commercial Pt/C catalysts. Among these, the Ru–O–MoS<small><sub>2</sub></small> catalyst, characterized by its asymmetrically coordinated O<small><sub>2</sub></small>–Ru–S<small><sub>1</sub></small> active sites, demonstrates the most favorable electrocatalytic behavior and exceptional stability across all pH ranges. Consequently, single-atom coordination engineering presents a powerful strategy for enhancing SAC catalytic performance, with promising applications in various fields.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sc/d4sc04905e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sc/d4sc04905e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the enhancement of catalytic activity in single-atom catalysts (SACs) through coordination engineering. By introducing non-metallic atoms (X = N, O, or F) into the basal plane of MoS2via defect engineering and subsequently anchoring hetero-metallic Ru atoms, we created 10 types of non-metal-coordinated Ru SACs (Ru–X–MoS2). Computations indicate that non-metal atom X significantly modifies the electronic structure of Ru, optimizing the hydrogen evolution reaction (HER). Across acidic, neutral, and alkaline electrolytes, Ru–X–MoS2 catalysts exhibit significantly improved HER performance compared with Ru–MoS2, even surpassing commercial Pt/C catalysts. Among these, the Ru–O–MoS2 catalyst, characterized by its asymmetrically coordinated O2–Ru–S1 active sites, demonstrates the most favorable electrocatalytic behavior and exceptional stability across all pH ranges. Consequently, single-atom coordination engineering presents a powerful strategy for enhancing SAC catalytic performance, with promising applications in various fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维 MoS2 中单原子钌的配位工程,促进氢气进化
本研究探讨了如何通过配位工程提高单原子催化剂(SAC)的催化活性。通过缺陷工程将非金属原子(X = N、O 或 F)引入 MoS2 基底面,然后锚定杂金属 Ru 原子,我们创建了 10 种非金属配位 Ru SACs(Ru-X-MoS2)。计算表明,非金属原子 X 显著改变了 Ru 的电子结构,优化了氢进化反应(HER)。与 Ru-MoS2 相比,在酸性、中性和碱性电解质中,Ru-X-MoS2 催化剂的氢进化性能都有显著提高,甚至超过了商用 Pt/C 催化剂。其中,Ru-O-MoS2 催化剂以其不对称配位的 O2-Ru-S1 活性位点为特征,在所有 pH 值范围内都表现出最有利的电催化行为和优异的稳定性。因此,单原子配位工程是提高 SAC 催化性能的有力策略,在各个领域都有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Simultaneous generation of hydroxyl and hydrogen radicals from H+/OH− pairs caused by water–solid contact electrification Tailoring Hierarchical MnO2 Nanostructures on Self-Supporting Cathodes for High-Mass-Loading Zinc-Ion Batteries Understanding ketone hydrogenation catalysis with anionic iridium(III) complexes: The crucial role of counterion and solvation Surfing the Limits of Cyanine Photocages One Step at a Time Ligand Cross-Links as a Design Element in Oligo- and PolyMOFs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1