Long Wang;Jixin Chen;Debin Hou;Xiaojie Xu;Zekun Li;Dawei Tang;Rui Zhou;Hao Qi;Yu Xiang
{"title":"An Ultra-wideband Doubler Chain with 43–65 dBc Fundamental Rejection in Ku/K/Ka Band","authors":"Long Wang;Jixin Chen;Debin Hou;Xiaojie Xu;Zekun Li;Dawei Tang;Rui Zhou;Hao Qi;Yu Xiang","doi":"10.23919/cje.2023.00.157","DOIUrl":null,"url":null,"abstract":"In this paper, a double-balanced doubler chain with >43-dBc fundamental rejection over an ultra-wide bandwidth in \n<tex>$0.13-\\mu\\mathrm{m}$</tex>\n SiGe BiCMOS technology is proposed. To achieve high fundamental rejection, high output power, and high conversion gain over an ultra-wideband, a double-balanced doubler chain with pre-and post-drivers employs a bandwidth broadening technique and a ground shielding strategy. Analysis and comparison of the single-balanced and double-balanced doublers were conducted, with a focus on their fundamental rejection and circuit imbalance. Three doublers, including a passive single-balanced doubler, an active single-balanced doubler, and a passive double-balanced doubler were designed to verify the performance and characteristics of the single-and double-balanced doublers. Measurements show that the proposed double-balanced doubler chain has approximately 15 dB better fundamental rejection, and more than twice the relative bandwidth compared to the single-balanced doubler chain fabricated with the same process. Over an 86.9% 3-dB bandwidth from 13.4 GHz to 34 GHz, the double-balanced doubler chain delivers 14.7-dBm peak output power and has >43-/33-dBc fundamental/third-harmonic rejection. To the authors' best knowledge, the proposed double-balanced doubler chain shows the highest fundamental rejection over an ultra-wideband among silicon-based doublers at millimeter-wave frequency bands.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 5","pages":"1204-1217"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669730","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669730/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a double-balanced doubler chain with >43-dBc fundamental rejection over an ultra-wide bandwidth in
$0.13-\mu\mathrm{m}$
SiGe BiCMOS technology is proposed. To achieve high fundamental rejection, high output power, and high conversion gain over an ultra-wideband, a double-balanced doubler chain with pre-and post-drivers employs a bandwidth broadening technique and a ground shielding strategy. Analysis and comparison of the single-balanced and double-balanced doublers were conducted, with a focus on their fundamental rejection and circuit imbalance. Three doublers, including a passive single-balanced doubler, an active single-balanced doubler, and a passive double-balanced doubler were designed to verify the performance and characteristics of the single-and double-balanced doublers. Measurements show that the proposed double-balanced doubler chain has approximately 15 dB better fundamental rejection, and more than twice the relative bandwidth compared to the single-balanced doubler chain fabricated with the same process. Over an 86.9% 3-dB bandwidth from 13.4 GHz to 34 GHz, the double-balanced doubler chain delivers 14.7-dBm peak output power and has >43-/33-dBc fundamental/third-harmonic rejection. To the authors' best knowledge, the proposed double-balanced doubler chain shows the highest fundamental rejection over an ultra-wideband among silicon-based doublers at millimeter-wave frequency bands.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.