Understanding activity and physiology at scale: The Apple Heart & Movement Study

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-09-10 DOI:10.1038/s41746-024-01187-5
James Truslow, Angela Spillane, Huiming Lin, Katherine Cyr, Adeeti Ullal, Edith Arnold, Ron Huang, Laura Rhodes, Jennifer Block, Jamie Stark, James Kretlow, Alexis L. Beatty, Andreas Werdich, Deepali Bankar, Matt Bianchi, Ian Shapiro, Jaime Villalpando, Sharon Ravindran, Irida Mance, Adam Phillips, John Earl, Rahul C. Deo, Sumbul A. Desai, Calum A. MacRae
{"title":"Understanding activity and physiology at scale: The Apple Heart & Movement Study","authors":"James Truslow, Angela Spillane, Huiming Lin, Katherine Cyr, Adeeti Ullal, Edith Arnold, Ron Huang, Laura Rhodes, Jennifer Block, Jamie Stark, James Kretlow, Alexis L. Beatty, Andreas Werdich, Deepali Bankar, Matt Bianchi, Ian Shapiro, Jaime Villalpando, Sharon Ravindran, Irida Mance, Adam Phillips, John Earl, Rahul C. Deo, Sumbul A. Desai, Calum A. MacRae","doi":"10.1038/s41746-024-01187-5","DOIUrl":null,"url":null,"abstract":"Physical activity or structured exercise is beneficial in a wide range of circumstances. Nevertheless, individual-level data on differential responses to various types of activity are not yet sufficient in scale, duration or level of annotation to understand the mechanisms of discrete outcomes nor to support personalized recommendations. The Apple Heart & Movement Study was designed to passively collect the dense physiologic data accessible on Apple Watch and iPhone from a large real-world cohort distributed across the US in order to address these knowledge gaps.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-11"},"PeriodicalIF":12.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01187-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01187-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Physical activity or structured exercise is beneficial in a wide range of circumstances. Nevertheless, individual-level data on differential responses to various types of activity are not yet sufficient in scale, duration or level of annotation to understand the mechanisms of discrete outcomes nor to support personalized recommendations. The Apple Heart & Movement Study was designed to passively collect the dense physiologic data accessible on Apple Watch and iPhone from a large real-world cohort distributed across the US in order to address these knowledge gaps.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模了解活动和生理学苹果心脏与运动研究
体育活动或有组织的锻炼在各种情况下都是有益的。然而,个人层面的数据在规模、持续时间或注释水平上对各种类型活动的不同反应还不足以了解离散结果的机制,也不足以支持个性化建议。Apple Heart & Movement Study(苹果心脏&运动研究)旨在从分布在美国各地的大型真实世界人群中被动收集可通过 Apple Watch 和 iPhone 访问的密集生理数据,以填补这些知识空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Learning from the EHR to implement AI in healthcare A data-driven framework for identifying patient subgroups on which an AI/machine learning model may underperform Phenotype driven molecular genetic test recommendation for diagnosing pediatric rare disorders Systematic review to understand users perspectives on AI-enabled decision aids to inform shared decision making The quality and safety of using generative AI to produce patient-centred discharge instructions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1