Single crystal XRD, Hirshfeld surface analysis and computational approach for exploration of novel xanthene derivative

IF 4 2区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Molecular Structure Pub Date : 2024-09-04 DOI:10.1016/j.molstruc.2024.139896
{"title":"Single crystal XRD, Hirshfeld surface analysis and computational approach for exploration of novel xanthene derivative","authors":"","doi":"10.1016/j.molstruc.2024.139896","DOIUrl":null,"url":null,"abstract":"<div><p>In order to study the structure-activity relationship of xanthene compound, hexahydro xanthene derivative was synthesized and characterized by single crystal X-rays diffraction. The molecular geometry was described in terms of dihedral angles between various rings present in structure. The stability of the supramolecular assembly was reinforced by multiple intermolecular interactions, which were inspected comprehensively via Hirshfeld surface analysis. DFT study revealed the excellent electronic properties and reactivity of synthesized compound. FMO is employed to uncover the orbitals energies and charge transfer within compound. The contribution of van der Waals forces is minor, while covalent nature of bonding is evidenced by the quantum theory of atoms in molecules (QTAIM) study. The electron transition from nonbonding orbitals (LP) to antibonding (LP*) are most prominent donor-acceptor interactions with significant stabilization energy. Ab-initio molecular dynamics reveals the kinetic and thermodynamic stability of present compound at room temperature. The excellent nonlinear optical properties and reactivity is revealed by its remarkable hyperpolarizability value.</p></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024024050","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to study the structure-activity relationship of xanthene compound, hexahydro xanthene derivative was synthesized and characterized by single crystal X-rays diffraction. The molecular geometry was described in terms of dihedral angles between various rings present in structure. The stability of the supramolecular assembly was reinforced by multiple intermolecular interactions, which were inspected comprehensively via Hirshfeld surface analysis. DFT study revealed the excellent electronic properties and reactivity of synthesized compound. FMO is employed to uncover the orbitals energies and charge transfer within compound. The contribution of van der Waals forces is minor, while covalent nature of bonding is evidenced by the quantum theory of atoms in molecules (QTAIM) study. The electron transition from nonbonding orbitals (LP) to antibonding (LP*) are most prominent donor-acceptor interactions with significant stabilization energy. Ab-initio molecular dynamics reveals the kinetic and thermodynamic stability of present compound at room temperature. The excellent nonlinear optical properties and reactivity is revealed by its remarkable hyperpolarizability value.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索新型氧杂蒽衍生物的单晶 XRD、Hirshfeld 表面分析和计算方法
为了研究呫吨化合物的结构-活性关系,我们合成了六氢呫吨衍生物,并通过单晶 X 射线衍射对其进行了表征。用结构中存在的各种环之间的二面角描述了分子几何形状。分子间的多种相互作用增强了超分子组装的稳定性。DFT 研究揭示了合成化合物优异的电子特性和反应活性。FMO 被用来揭示化合物内部的轨道能量和电荷转移。范德华力的作用很小,而分子中原子的量子理论(QTAIM)研究则证明了共价键的性质。从非键轨道(LP)到反键轨道(LP*)的电子转换是最突出的供体-受体相互作用,具有显著的稳定能量。Ab-initio 分子动力学揭示了该化合物在室温下的动力学和热力学稳定性。该化合物卓越的超极化值显示了其出色的非线性光学特性和反应活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
期刊最新文献
A tetrahedral zinc(II) coordination polymer: Synthesis, characterisation, and application in ascorbic Acid fluorescence sensing Molecular modeling aided design, synthesis, and activity evaluation of N-arylindole derivatives as GPR52 agonists Construction of a new ionic Co(II) coordination polymer and its composite with CNTs showing dual electrochemical sensing to AA and Fe3+ Preparation and characterization of a new nanocomposite, Genista Scorpius fibers/Poly (diallyldimethylammonium chloride)/zero valent silver: Application to the catalytic reduction of hazardous azo dyes in water Homogeneous and heterogeneous ionic liquids catalyze CO2 cycloaddition reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1