Exploring electrochemical kinetic behaviors and interfacial charge transfer of pure and Ni-doped ZnFe2O4 nanoparticles-based sensing nanoplatform for ultra-sensitive detection of chloramphenicol

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-05 DOI:10.1016/j.sna.2024.115875
Ong Van Hoang , Tuyet Nhung Pham , Hoang Van Thanh , Le Thi Thanh Tam , Ngo Xuan Dinh , Le Trong Lu , Anh-Tuan Le
{"title":"Exploring electrochemical kinetic behaviors and interfacial charge transfer of pure and Ni-doped ZnFe2O4 nanoparticles-based sensing nanoplatform for ultra-sensitive detection of chloramphenicol","authors":"Ong Van Hoang ,&nbsp;Tuyet Nhung Pham ,&nbsp;Hoang Van Thanh ,&nbsp;Le Thi Thanh Tam ,&nbsp;Ngo Xuan Dinh ,&nbsp;Le Trong Lu ,&nbsp;Anh-Tuan Le","doi":"10.1016/j.sna.2024.115875","DOIUrl":null,"url":null,"abstract":"<div><p>ZnFe<sub>2</sub>O<sub>4</sub> (ZFO) nanomaterial was doped with a divalent transition metal cation of Ni<sup>2+</sup> (Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>, x=0, 0.2, 0.4, and 0.8) and characterized by various analytical techniques. Powder X-ray diffraction revealed the formation of a single-phase cubic spinel structure, while the stabilization of crystal structure for Ni<sup>2+</sup>-doped samples was observed. The average crystalline size, d-spacing, and lattice parameters increased with increasing in Ni<sup>2+</sup> concentration within Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>, due to differences in the ionic radius, the cation distribution at A-B sites, and the creation of surface oxygen vacancies within ZFO structure. From electrochemical measurements, Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>-based electrodes showed excellent enhancements in charge transfer ability and conductivity with the highest rate constant (0.018 ms<sup>−1</sup>), the lowest peak-to-peak separation (206 mV), the lowest R<sub>ct</sub> (118 Ω), and the largest electrochemical active area (0.248 cm<sup>2</sup>), compared to that of bare SPE. Among them, Ni<sub>0.8</sub>Zn<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub>/SPE provided outstanding electrochemical behaviors and achieved the best sensing performance with the widened concentration linear range from 0.25 to 50 μM and a rather low detection limit of 0.2 μM for chloramphenicol detection. The most important reason for this positive advance comes from the unique synergistic effects of Ni doping into the ZFO host structure. The excellent enhancements in adsorption capacity (Г) (1.4 times higher), number of oxygen vacancies, charge transfer rate constant (approximately 1.15 times higher), and catalytic rate constant (30 times greater) were recorded at Ni-doped ZFO-based electrodes, compared to pure ZFO-based electrode. Furthermore, the detailed hypotheses and possible mechanisms explaining these impressive enhancements were explored. Our work provides insight into the correlation between the Ni-doping and electrochemical characteristics, which has implications for tailoring the electrochemical performance of spinel ferrites across diverse applications and the design of novel spinel ferrite nanomaterials.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008690","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ZnFe2O4 (ZFO) nanomaterial was doped with a divalent transition metal cation of Ni2+ (NixZn1-xFe2O4, x=0, 0.2, 0.4, and 0.8) and characterized by various analytical techniques. Powder X-ray diffraction revealed the formation of a single-phase cubic spinel structure, while the stabilization of crystal structure for Ni2+-doped samples was observed. The average crystalline size, d-spacing, and lattice parameters increased with increasing in Ni2+ concentration within NixZn1-xFe2O4, due to differences in the ionic radius, the cation distribution at A-B sites, and the creation of surface oxygen vacancies within ZFO structure. From electrochemical measurements, NixZn1-xFe2O4-based electrodes showed excellent enhancements in charge transfer ability and conductivity with the highest rate constant (0.018 ms−1), the lowest peak-to-peak separation (206 mV), the lowest Rct (118 Ω), and the largest electrochemical active area (0.248 cm2), compared to that of bare SPE. Among them, Ni0.8Zn0.2Fe2O4/SPE provided outstanding electrochemical behaviors and achieved the best sensing performance with the widened concentration linear range from 0.25 to 50 μM and a rather low detection limit of 0.2 μM for chloramphenicol detection. The most important reason for this positive advance comes from the unique synergistic effects of Ni doping into the ZFO host structure. The excellent enhancements in adsorption capacity (Г) (1.4 times higher), number of oxygen vacancies, charge transfer rate constant (approximately 1.15 times higher), and catalytic rate constant (30 times greater) were recorded at Ni-doped ZFO-based electrodes, compared to pure ZFO-based electrode. Furthermore, the detailed hypotheses and possible mechanisms explaining these impressive enhancements were explored. Our work provides insight into the correlation between the Ni-doping and electrochemical characteristics, which has implications for tailoring the electrochemical performance of spinel ferrites across diverse applications and the design of novel spinel ferrite nanomaterials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索基于纯 ZnFe2O4 纳米粒子和掺杂镍的 ZnFe2O4 纳米粒子的电化学动力学行为和界面电荷转移,以实现对氯霉素的超灵敏检测
纳米 ZnFe2O4(ZFO)材料掺杂了二价过渡金属阳离子 Ni2+(NixZn1-xFe2O4,x=0、0.2、0.4 和 0.8),并通过各种分析技术对其进行了表征。粉末 X 射线衍射显示形成了单相立方尖晶石结构,同时观察到掺杂 Ni2+ 的样品晶体结构趋于稳定。随着 NixZn1-xFe2O4 中 Ni2+ 浓度的增加,平均结晶尺寸、d-间距和晶格参数也随之增加,这是由于离子半径、A-B 位点的阳离子分布以及 ZFO 结构中表面氧空位的产生造成的。从电化学测量结果来看,与裸 SPE 相比,NixZn1-xFe2O4 基电极在电荷转移能力和电导率方面都有很好的提高,具有最高的速率常数(0.018 ms-1)、最低的峰-峰分离电压(206 mV)、最低的 Rct(118 Ω)和最大的电化学活性面积(0.248 cm2)。其中,Ni0.8Zn0.2Fe2O4/SPE 具有出色的电化学性能,实现了最佳的传感性能,浓度线性范围从 0.25 μM 扩大到 50 μM,氯霉素的检测限低至 0.2 μM。取得这一积极进展的最重要原因是在 ZFO 主结构中掺入镍的独特协同效应。与纯 ZFO 基电极相比,掺杂了镍的 ZFO 基电极在吸附容量 (Г)(高出 1.4 倍)、氧空位数、电荷转移速率常数(高出约 1.15 倍)和催化速率常数(高出 30 倍)方面都有显著提高。此外,我们还探讨了解释这些令人印象深刻的增强效果的详细假设和可能机制。我们的研究深入探讨了掺镍与电化学特性之间的相关性,这对于在各种应用中定制尖晶铁氧体的电化学性能以及设计新型尖晶铁氧体纳米材料具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Corrigendum to "The hydroalcoholic extract of Nasturtium officinale reduces oxidative stress markers and increases total antioxidant capacity in patients with asthma" [J. Ethnopharmacol. 318 (2024) 116862]. Corrigendum to "Asiaticoside-nitric oxide promoting diabetic wound healing through the miRNA-21-5p/TGF-β1/SMAD7/TIMP3 signaling pathway" [J. Ethnopharmacol. 319 (2024) 117266]. Corrigendum to "The antiviral effect and potential mechanism of Houttuynia cordata Thunb. (HC) against coxsackievirus A4" [J. Ethnopharmacol. 337, part 3 (2024) 118975]. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1