Characterization of the urban heat Island effect from remotely sensed data based on a hierarchical model

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Hydrology X Pub Date : 2024-09-01 DOI:10.1016/j.hydroa.2024.100184
Lucas Ford , Dingbao Wang , Mukesh Kumar , A. Sankarasubramanian
{"title":"Characterization of the urban heat Island effect from remotely sensed data based on a hierarchical model","authors":"Lucas Ford ,&nbsp;Dingbao Wang ,&nbsp;Mukesh Kumar ,&nbsp;A. Sankarasubramanian","doi":"10.1016/j.hydroa.2024.100184","DOIUrl":null,"url":null,"abstract":"<div><p>This study attempts to statistically characterize the Urban Heat Island Intensity (UHII) (<span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span>) for 55 cities under three climate regimes – arid, snow and temperate – across the US. The study uses remotely sensed data products, daily temperature from MODIS and daily evapotranspiration from SSEBop model, to calculate the urban–rural difference in daily-mean temperature and daily-mean evapotranspiration (<span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mi>E</mi><mi>T</mi></mrow></math></span> respectively) for the selected cities. By developing a hierarchical model that explains UHII using temporally-varying <span><math><mrow><mi>Δ</mi><mi>E</mi><mi>T</mi></mrow></math></span> and spatially-varying urban morphometric characteristics (total urban area and percentage impervious area) available for each city, we find that 89% of the spatio-temporal variability in annual <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> can be explained. The relationship between <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mi>E</mi><mi>T</mi></mrow></math></span> is found to be negative indicating increased difference in daily means of ET (<span><math><mrow><mi>Δ</mi><mi>E</mi><mi>T</mi></mrow></math></span>) result in increased difference in daily means of temperature (<span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span>) between urban and rural paracels The variation of <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> per unit <span><math><mrow><mi>Δ</mi><mi>E</mi><mi>T</mi></mrow></math></span> is found to be highest in arid and snowy environments and smallest in temperate environments in the south-southeast US. The relation between <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mi>E</mi><mi>T</mi></mrow></math></span> is negative for most cities, except Madison (WI) and Sacramento (CA), across the US. Both the selected urban morphometric properties are found to be statistically significant in explaining the spatial variability in UHII, but the difference in urban–rural difference in evapotranspiration is the primary driver for UHII.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"25 ","pages":"Article 100184"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915524000142/pdfft?md5=2495ac0366cac1f2041cee53bac8c93f&pid=1-s2.0-S2589915524000142-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915524000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study attempts to statistically characterize the Urban Heat Island Intensity (UHII) (ΔT) for 55 cities under three climate regimes – arid, snow and temperate – across the US. The study uses remotely sensed data products, daily temperature from MODIS and daily evapotranspiration from SSEBop model, to calculate the urban–rural difference in daily-mean temperature and daily-mean evapotranspiration (ΔT and ΔET respectively) for the selected cities. By developing a hierarchical model that explains UHII using temporally-varying ΔET and spatially-varying urban morphometric characteristics (total urban area and percentage impervious area) available for each city, we find that 89% of the spatio-temporal variability in annual ΔT can be explained. The relationship between ΔT and ΔET is found to be negative indicating increased difference in daily means of ET (ΔET) result in increased difference in daily means of temperature (ΔT) between urban and rural paracels The variation of ΔT per unit ΔET is found to be highest in arid and snowy environments and smallest in temperate environments in the south-southeast US. The relation between ΔT and ΔET is negative for most cities, except Madison (WI) and Sacramento (CA), across the US. Both the selected urban morphometric properties are found to be statistically significant in explaining the spatial variability in UHII, but the difference in urban–rural difference in evapotranspiration is the primary driver for UHII.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次模型的遥感数据城市热岛效应特征描述
本研究试图从统计学角度描述美国 55 个城市在干旱、冰雪和温带三种气候条件下的城市热岛强度 (UHII) (ΔT)。该研究利用遥感数据产品,即 MODIS 的日气温和 SSEBop 模型的日蒸散量,计算所选城市的日平均气温和日平均蒸散量的城乡差异(分别为 ΔT 和 ΔET)。通过建立一个分层模型,利用每个城市随时间变化的 ΔET 和随空间变化的城市形态特征(城市总面积和不透水面积百分比)来解释 UHII,我们发现 89% 的年ΔT 时空变化可以得到解释。单位 ΔET 的 ΔT 变化在美国东南部的干旱和多雪环境中最大,在温带环境中最小。除麦迪逊(威斯康星州)和萨克拉门托(加利福尼亚州)外,全美大多数城市的 ΔT 与 ΔET 呈负相关。在解释 UHII 的空间变异性方面,所选的两种城市形态属性都具有统计学意义,但蒸散量的城乡差异是 UHII 的主要驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
期刊最新文献
Revisiting model complexity: Space-time correction of high dimensional variable sets in climate model simulations Quantifying the economic value of a national hydrometric network for households Private sensors and crowdsourced rainfall data: Accuracy and potential for modelling pluvial flooding in urban areas of Oslo, Norway A combined data assimilation and deep learning approach for continuous spatio-temporal SWE reconstruction from sparse ground tracks A nonstationary stochastic simulator for clustered regional hydroclimatic extremes to Characterize compound flood risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1